All these fundamental groups!

Tuesday, April 02nd, 2013 | Author:

There are a lot of fundamental groups floating around in mathematics. This is an attempt to collect some of the most popular and sketch their relations to each other.

Continue reading «All these fundamental groups!»

Category: English, Mathematics | Comments off

Feynman Graphs and Motives

Wednesday, March 20th, 2013 | Author:

Being on a school about Feynman graphs and Motives, I just learned how these are related. It's a cute story! Actually, you don't need any physics to appreciate it, though physics might let you appreciate it even more.

A Feynman graph is just a (non-directed) graph with a finite number of vertices and a finite number of edges. Physicists are interested in computing certain integrals defined in terms of Feynman graphs, which they call amplitudes.

Continue reading «Feynman Graphs and Motives»

Category: English, Mathematics | Comments off

Motives of Projective Bundles

Friday, December 14th, 2012 | Author:

Given a vector bundle E-->X of rank r+1 one can take the projective space of lines in each fiber, which results in a projective bundle P(E)-->X. A projective bundle formula for a functor F from spaces to rings tells us that F(P(E)) is a free F(X)-module of rank r.

In this post I look at some computations around projective bundle formulae for the Chow ring, the algebraic K-Theory and the (Chow) motive of some spaces, in particular flag varieties. We recover some results from the previous posts on cohomology, cycles & bundles and motive of projective space.

Continue reading «Motives of Projective Bundles»

Category: English | Comments off

Invariants of projective space III: Motives

Monday, December 10th, 2012 | Author:

I want to explain a particularly easy example of a motivic cellular decomposition: That of n-dimensional projective space. The discussion started with cohomology (part 1), continued with bundles and cycles (part 2) and in this part 3, we discuss motivic stuff.

Continue reading «Invariants of projective space III: Motives»

Category: English, Mathematics | Comments off

Invariants of projective space II: Cycles and Bundles

Thursday, December 06th, 2012 | Author:

I want to explain a particularly easy example of a motivic cellular decomposition: That of n-dimensional projective space. The discussion started with cohomology (part 1) and in this part 2, we discuss intersection-theoretic and bundle-theoretic invariants. In part 3 we will see the motivic stuff.

Continue reading «Invariants of projective space II: Cycles and Bundles»

Category: English, Mathematics | Comments off

Invariants of projective space I: Cohomology

Tuesday, December 04th, 2012 | Author:

I want to explain a particularly easy example of a motivic cellular decomposition: That of n-dimensional projective space. We will have a look at the cohomology, the Chow groups and the algebraic K-theory of projective space -- a discussion probably interesting to non-motivic people as well. After these invariants, I will look at the motive and the A¹-homotopy type. Then I want to describe the decomposition of the motive (and the homotopy type) homotopy-theoretically, by means of cofiber sequences. (We will see that projective space is not isomorphic to a coproduct of motivic spheres with the same motive). Of course, nothing is new, I'm just working out exercises here.

In this part 1, I discuss only the cohomology of \mathbb{P}^n. Part 2 contains a discussion of the intersection theory and bundles and part 3 contains the motivic stuff. I intentionally left out usage of projective bundle formulas, as I will discuss them separately.

Continue reading «Invariants of projective space I: Cohomology»

Category: English, Mathematics | Comments off