Motivic Cell Structure of Toric Surfaces

Wednesday, April 17th, 2013 | Author:

In this post I'll do a few very explicit computations for motivic cell structures of smooth projective toric varieties coming from the BiaƂynicki-Birula decomposition, namely \mathbb{P}^1, \mathbb{P}^1 \times \mathbb{P}^1, \mathbb{P}^2 and Hirzebruch surfaces. It is a bit lengthy but maybe helpful to anyone who wants to do some explicit calculations with BB-decompositions. I hope you're accustomed to toric varieties, but I won't do anything fancy. You can safely skip the motivic part of this post.

Continue reading «Motivic Cell Structure of Toric Surfaces»

Category: English, Mathematics | Comments off

All these fundamental groups!

Tuesday, April 02nd, 2013 | Author:

There are a lot of fundamental groups floating around in mathematics. This is an attempt to collect some of the most popular and sketch their relations to each other.

Continue reading «All these fundamental groups!»

Category: English, Mathematics | Comments off

Feynman Graphs and Motives

Wednesday, March 20th, 2013 | Author:

Being on a school about Feynman graphs and Motives, I just learned how these are related. It's a cute story! Actually, you don't need any physics to appreciate it, though physics might let you appreciate it even more.

A Feynman graph is just a (non-directed) graph with a finite number of vertices and a finite number of edges. Physicists are interested in computing certain integrals defined in terms of Feynman graphs, which they call amplitudes.

Continue reading «Feynman Graphs and Motives»

Category: English, Mathematics | Comments off

Motives of Projective Bundles

Friday, December 14th, 2012 | Author:

Given a vector bundle E-->X of rank r+1 one can take the projective space of lines in each fiber, which results in a projective bundle P(E)-->X. A projective bundle formula for a functor F from spaces to rings tells us that F(P(E)) is a free F(X)-module of rank r.

In this post I look at some computations around projective bundle formulae for the Chow ring, the algebraic K-Theory and the (Chow) motive of some spaces, in particular flag varieties. We recover some results from the previous posts on cohomology, cycles & bundles and motive of projective space.

Continue reading «Motives of Projective Bundles»

Category: English | Comments off

Divisorial Jungle

Thursday, November 29th, 2012 | Author:

I'd like to compile a short list of definitions of Weil and Cartier Divisors, Line Bundles and Invertible Sheaves, Class Groups and Picard Groups, Cohomology, (higher) Chow Groups and K-theory for algebraic schemes and their relations. I intentionally omit proofs, but there are some ideas. I couldn't resist to jot down some properties of the objects which are important to me (homotopy invariance, existence of pullbacks and pushforwards).

Continue reading «Divisorial Jungle»

Category: English, Mathematics | Comments off

Model structures on simplicial presheaves

Friday, November 23rd, 2012 | Author:

This is a very short notice to memorize some of the various model structures on simplicial presheaves in a systematic way.

[UPDATE 2013-03-06] I gave a talk in our working group seminar about model structures on simplicial presheaves, homotopy sheaves and h-principles [/UPDATE]

Continue reading «Model structures on simplicial presheaves»

Category: English, Mathematics | Comments off