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1 Big Picture

Slogan: “R, C, H, O are special”
If we consider R-algebras with some extra property or structure, like being a finite

dimensional division algebra or admitting a norm or a composable quadratic form, very
often all you can have are the classical four algebras of dimensions 1, 2, 4, 8.

They arise from the real numbers by the Cayley-Dickson construction, which is algebraic.
As a consequence, the numbers 1, 2, 4, 8 show up elsewhere in mathematics. One

example is the Hopf invariant one problem, whose solution shows that the unit spheres in
R1,R2,R4,R8 are the only ones which admit a multiplication, even up to homotopy.
Another prominent example of the classical division algebras showing up is the con-

struction of exceptional groups.

∗More than enough notes for a talk in the “Basic Notions” seminar, Freiburg
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2 Algebras

Definition. Let A be a k-algebra with k a field.

• A is associative if its multiplication is.

• A is simple if the multiplication is not uniformly 0 and there are no non-trivial
two-sided ideals.

• A is central simple or a csa if it is associative, simple and k is the center.

• A is a division algebra if one can solve equations ax = b and xa = b for x. An
associative division algebra can be characterized by having inverse elements for any
x 6= 0.

• A is a composition algebra if it has a quadratic form N which is composable, i.e.
N(xy) = N(x)N(y).

• A is a Banach algebra if it has a multiplicative norm and it complete for this norm.

Proposition. Every simple algebra A is a csa over its center Z(A), which is a commu-
tative ring without nontrivial ideals, hence a field. Every associative k-division algebra A
is simple, hence a k′-csa for k′/k a field extension.

2.1 Finite fields

Theorem (Wedderburn’s little theorem 1905). For a division algebra A over a field k,
the following are equivalent:

• k is a finite field and A is finite dimensional over k

• A is a finite field.

This follows from the Skolem-Noether theorem, which states that every automorphism
of a finite dimensional csa over a field is inner.

2.2 Algebraically closed fields

Proposition. Over an algebraically closed field k = k, the only finite-dimensional asso-
ciative division algebra is k itself.

Proof. If you have D over k, any a ∈ D is the root of a monic polynomial f , since the
powers an are linearly dependent over k. Choose f of minimal-degree, let λ be a root in
k, then f(x) = g(x)(x− λ) and minimality of f yields g(a) 6= 0, hence λ = a.

From this, one can show the interesting

Proposition. The dimension of a k-csa is either infinite or a square.
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Proof. If a k-csa A its not infinite-dimensional, extend A to the algebraic closure k. By
another theorem of Wedderburn, There is a skew field D such that Ak is a matrix algebra
Mat(D)n×n. We count [Ak : k] = n2[D : k]. By the previous proposition D = k, therefore
[A : k] = [Ak : k] = n2.

Remark. While R and H have center R and therefore are R-csa (and have square
dimensions 1, 4), this is not the case for C, which has center C and O, which is not
associative. The Brauer group of R, which classifies R-csa’s up to Morita equivalence,
contains just one nontrivial element, corresponding to H.

Over an arbitrary field k, four-dimensional k-csa’s are also called quaternion algebras.

2.3 R-division algebras

Example. R, C, H, O are R-division algebras with complete norm (defined by a com-
posable quadratic form). While R and C are commutative, H is non-commutative and O
is not even associative.

Example. The split complex numbers are R⊕ jR with j2 = 1, so

(a+ jb)(c+ jd) = (ac+ bd) + j(ad+ bc).

There are zero divisors:

(1− j)(1 + j) = (1− 1) + j(1− 1) = 0

hence we have an associative algebra on R2 which is not a division algebra.
There are also split quaternions and split octonions.

Example. Another “splitting phenomenon” is the isomorphism

H⊗R C −→∼ Mat2×2(C).

Theorem (Frobenius 1877). The only finite-dimensional associative R-division algebras
are R, C, H.

To prove this, one shows that in any finite-dimensional associative R-division algebra
D the subspace V := {a ∈ D | a2 = λ · 1, λ ≤ 0} is a direct summand of codimension
1 that generates D as algebra. Then B(a, b) := −(ab+ ba)/2 is an inner product on V .
Using a minimal length generating system for D inside V , one can see in a case-by-case
analysis that the length can only be 0, 1, 2 or D wouldn’t be a division algebra.

There exist many infinite-dimensional associative division algebras:

Example. Over Q(t), take formal Laurent series Q(t)((x)) with new product induced by
x · a(t) := a(2t)x. This is not a field, but an infinite dimensional associative Q-division
algebra (due to Hilbert).

Example. For any Banach space X, the endomorphisms End(X) with composition form
an infinite dimensional associative Banach algebra, but not every element is invertible.
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Theorem (Gelfand-Mazur 1938). The only associative Banach R-division algebras are
R, C, H. The only associative Banach C-division algebra is C.

Both statements follow from a rather elementary analysis of the spectrum of elements,
but the first takes much more time than the second.

3 Cayley-Dickson construction

Definition. If A is an algebra with involution ∗ : A→ A such that (ab)∗ = b∗a∗, we call
a subalgebra A′ ⊂ A real if ∗|A′ = A′. For the identity involution on A, the whole A is
real. This is how we consider R as an algebra with involution.

Definition. Given a unital algebra A with involution ∗ : A→ A such that (ab)∗ = b∗a∗,
on B := A ⊕ iA (with i an arbitrary new symbol) we define a new multiplication that
satisfies i2 = −1, by the formula

(a+ ib)(c+ id) = (ac− λd∗b) + i(da+ bc∗),

where we put λ = 1. We define an involution on B by (a+ ib)∗ := a∗ − ib.

Proposition. The Cayley-Dickson construction “destroys” properties.

• If A is associative, commutative and real, B will be associative and commutative,
but no longer real.

• If A is associative, commutative, but not real, B will be associative, but no longer
commutative.

• If A is associative, but not commutative, B will no longer be associative, but
alternative (a weak form of associativity).

Example. For R with the identity involution, we obviously get C with the complex
conjugation as involution, while we loose the property of being “real”. From C we get
H, which is no longer commutative, and then we get O, which is no longer associative.
The next step are the Sedenions S, which are no longer a division algebra, but still
power-associative. We can go on forever, doubling in each step the dimension of the
algebra.

Definition. For a unital composition algebra A with quadratic form N , we define a
bilinear form b by the polarization formula from the quadratic form:

b(a, b) :=
1

2
(N(a+ b)−N(a)−N(b))

if the field k has chark 6= 2, in which case we only have a definition of 2b. In any case,
we define an involution on A by

a∗ = 2b(a, 1)1− a.
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In addition to the “external” Cayley-Dickson construction for a unital composition
algebra, there is also an “internal” version:

Proposition. Given a unital composition algebra A and a finite-dimensional composition
subalgebra A′ ⊂ A with A′ 6= A, there is a subalgebra B′ ⊂ A such that A′ ⊕ B′ ⊂ A is
isomorphic to the Cayley-Dickson construction applied to A′.

Proof. We have A = A′ ⊕ A′⊥ and there is a ∈ A′⊥ with N(a) 6= 0. Then B′ := Aa
is a composition subalgebra of A with B′ ⊂ A′⊥ and on A′ ⊕ B′ we can verify the
Cayley-Dickson formula with λ := N(a), by calculations.

Lemma. Any proper, finite-dimensional subalgebra of a composition algebra is associative.

Proof. Let A′ ⊂ A be a proper, finite-dimensional subalgebra. We test associativity with
the bilinear form defined by the quadratic form, using the extra space of having a proper
subalgebra.
Let a ∈ A′⊥ with N(a) 6= 0. Then for x, y, u, v ∈ A′ we have

N((x+ ya)(u+ va)) = N(x+ ya)N(u+ va)

so plugging in the definition of the bilinear form b (resp. 2b) defined by N gives

b(xu, v∗y)− b(vx, yu∗) = 0

So one has
b((xu)y∗, v∗) = b(v, (yu∗)x∗) = b(x(uy∗)v∗)

for all v, hence for all v∗, actually

(xu)y = x(uy).

Theorem (Jacobson). A composition algebra over a field k can be only of dimensions
1, 2, 4, 8. In particular there are no infinite-dimensional composition algebras.

Proof. In characteristics 2, the proof (by Springer) is different, we don’t discuss it, so
let k be of characteristics 6= 2. Let A be a composition algebra, then in the center we
have a 1-dimensional composition sub-algebra k1 from which Cayley-Dickson gives a
2-dimensional composition sub-algebra. If one gets to the third step, the 8-dimensional
composition sub-algebra one gets is no longer associative (since Cayley-Dickson only gives
something associative if the input is commutative, and the dimension 4 step is already
non-commutative), so from the previous lemma it must be non-proper, i.e. the whole
thing.

Remark. One can say something more about the properties of composition algebras:

• Composition algebras of dimension 1 and 2 are commutative and associative.
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• Composition algebras of dimension 2 are either quadratic field extensions of k (like
the complex numbers) or isomorphic to k ⊕ k (like the split complex numbers, which
are not a division algebra).

• Composition algebras of dimension 4 are called quaternion algebras. They are
associative but never commutative.

• Composition algebras of dimension 8 are called octonion algebras. They are neither
associative nor commutative.

Remark. Over any field, in each dimension 2, 4, 8 there is, up to isomorphism, exactly
one split composition algebra, and no other composition algebra with zero divisors. The
split composition algebras are the only ones where the quadratic form is isotropic, i.e.
there exists x with N(x) = 0.

Remark. Over k = R, one can show that every composition division algebra is (isomet-
rically) isomorphic to one of R, C, H, O. As a consequence, one gets a result of Hurwitz
from 1898 on composability of bilinear forms (sums of square formulas). Therefore the
theorem is sometimes called “Hurwitz’ Theorem”. One can classify the composition algebras
over more fields (e.g. algebraically closed fields or algebraic number fields).

4 Spheres

Proposition. For any R-division algebra A, the additive structure A −→∼ Rn induces a
(not necessarily multiplicative) norm on A and the multiplication map m : A× A→ A
induces a multiplication on the unit sphere S(A) −→∼ Sn−1, which is an odd map

m : Sn−1 × Sn−1 → Sn−1

where the oddity is m(−x, y) = −m(x, y) = m(x,−y).
In particular, the division algebras R, C, H, O induce multiplications on S0, S1, S3, S7.

Theorem (Hopf 1940). The dimension of a R-division algebra is a power of 2.

Proof. We look at the map induced by the multiplication m on the associated projective
spaces

M : RPn−1 × RPn−1 → RPn−1

on the cohomology with finite coefficients F2:

M∗ : H•(RPn−1;F2) = F2[t]/t
n → F2[u, v]/(un, vn) = H•(RPn−1 × RPn−1;F2)

where we obviously have M∗(t) = u+ v, so from tn = 0 we get

0 = M∗(tn) = (u+ v)n =
n−1∑
k=0

(
n

k

)
ukvn−k

over F2, which just means all the binomial coefficients are even. This means n has only
even prime factors.
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Definition. For A a R-division algebra of dimension n, the 2 : 1 covering S(A2)→ P(A)
is called Hopf fibration. We study it as element of π2n−1(Sn).

Definition. For ϕ : S2n−1 → Sn the mapping cone Cϕ := Sn ∪ϕ D2n−1 has a basepoint,
a n-cell α and a 2n-cell β. The Hopf invariant h(ϕ) is defined by the equation α ∪ α =
h(ϕ)β ∈ H•(Cϕ).

Remark. The Hopf invariant measures how much the preimages of two points are “linked”.
For the Hopf fibrations, the Hopf invariant is 1.

Theorem (Adams, Hopf Invariant One Problem, 1960). The only maps with Hopf
invariant 1 are the Hopf fibrations in dimensions 1, 2, 4, 8.

The original proof used delicate analysis of Steenrod operations. A shorter proof of
Adams’ Theorem was given 1966 by Atiyah, using Adams operations and the (eight-fold)
Bott periodicity in real K-theory, which in turn comes from the classification of real
Clifford algebras (again an eight-fold symmetry).

Corollary. The only finite dimensional R-division algebras are of dimensions 1, 2, 4, 8.
The only spheres with multiplication (up to homotopy) are S0, S1, S3, S7, and these are
also the only spheres which are parallelizable.

There is no algebraic proof of this fact!

Remark. While there are infinitely many finite dimensional R-divison algebras, up to
isomorphy, the only commutative associative ones are R and C, the only non-commutative
associative one is H and the only non-associative one is O.

5 Exceptional Groups

We remember that one can take a semisimple algebraic group G or a compact Lie group
G and associate to it the semisimple Lie algebra of invariant derivations g, then to any
semisimple Lie algebra its root system Φ and to every root system a Dynkin diagram D.
The classification of root systems show how to build a root system out of a Dynkin diagram,
but a very hard question is how to get a Lie algebra g or a group G with prescribed
root system Φ. For the “classical groups” this is readily solved, but for exceptional root
systems it is not obvious.

The exceptional root systems are G2, F4, E6, E7, E8. They are related to the division
algebras R, C, H, O.
One can show that Aut(O) is a group of type G2 and the automorphisms of OP2 are

a group of type F4, and that a “complexified version” of OP2 has automorphism group
E6. The definition of anything like OP2 ⊗H and OP2 ⊗Octonion is not straightforward,
but it would morally give us groups of type E7 and E8. The right way to do this is via
Moufang loops and Rosenfeld projective planes.
A very beautiful way of constructing Lie algebras with exceptional type are the

Freudenthal-Tits magic squares.
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Definition. A Jordan algebra is a (commutative) algebra over a field (of characteristics
6= 2) in which the Jordan identity holds:

x2(xy) = x(x2y)

For a finite-dimensional R-division algebra A denote by J3(A) the Jordan algebra of
3 × 3-hermitian matrices, by A0 the trace-free part and by der(A) the Lie algebra of
derivations.

Theorem. For finite-dimensional R-division algebras A,B we define

L(A,B) := der(A)⊕ der(J3B)⊕ (A0 ⊗ J3(B)0).

Then one can observe L(A,B) = L(B,A), which is why this construction is called “magic”.
Furthermore,

• L(O,R) is type F4

• L(O,C) is type E6

• L(O,H) is type E7

• L(O,O) is type E8

There are other constructions for L which are obviously symmetric.

Remark. If one plugs in the split versions of the division algebras (e.g. the split complex
numbers), one gets split real forms of exceptional groups.

Sources: mostly Springer-Veldkamp “Octonions, Jordan Algebras and Exceptional
Groups”, occasionally: Lam “Noncommutative Algebra”, Ebbinghaus et al. “Numbers”,
Wikipedia, nLab, John Baez’ TWF on the Cayley numbers (=octonions).
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