
The Software Development Approach
in Mathematics

Albert-Ludwigs-Universität Freiburg

Konrad Voelkel
“Computer Tools in Pure Math”
Freiburg, November 2014



Goal of this talk

Change your approach to research ...slightly

You could try out some computer tools, think about
possible new ones, and help developing them!

and then
there are some questions.



Overview

Why Homotopy Type Theory is interesting

(to me)

Non-Computational Computer Tools

(i.e. excluding CAS)

Developing new tools

Most text and images in these slides are hyperlinked.
Please help saving trees by not printing this.



Proofs are Programs

Historical context:
1934, 1958 Curry and 1969 Howard: correspondence
between certain proof theories and typed lambda calculus.
“Curry-Howard correspondence”
1960s - de Bruijn: Automath, first proof checker,
independently rediscovered “proofs are programs”
Here, a “proof” is a formal deduction.
Problems: most people don’t want to think about formal
deductions at all, and it’s tedious.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076489/
http://www.ams.org/mathscinet-getitem?mr=94298
http://www.ams.org/mathscinet-getitem?mr=592816
https://en.wikipedia.org/wiki/Curry-Howard_correspondence
http://www.win.tue.nl/automath/


Homotopy Type Theory

Background:
1963 Lawvere: categorical semantics for algebraic theories.
1980 Lambek: cartesian closed categorical semantics for
simply typed lambda calculus.

“Curry-Howard-Lambek
corresp.”

1983 Grothendieck: homotopy type = ∞-groupoid.
1995 Hofmann and Streicher: model of dependent type
theory with non-trivial identity types, turning types into
groupoids.
2006 Awodey and Voevodsky: identity types as path spaces,
turning types into ∞-groupoids.

http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://www.ams.org/mathscinet-getitem?mr=592812
http://www.ams.org/mathscinet-getitem?mr=592812
http://webusers.imj-prg.fr/~georges.maltsiniotis/ps.html
http://www.ams.org/mathscinet-getitem?mr=1686862
http://www.ams.org/mathscinet-getitem?mr=1686862
http://www.ams.org/mathscinet-getitem?mr=1686862
http://homotopytypetheory.org/
http://homotopytypetheory.org/


Homotopy Type Theory

It’s interesting for several reasons:

(to me)

Conjecturally, internal logic in an (∞,1)-topos
Synthetic homotopy theory easy to formalise
Might entice a new generation of researchers studying
formal methods along their other research
IAS wrote a 600-page book with many authors in short time,
using GitHub

http://ncatlab.org/nlab/show/homotopy+type+theory#models_in_categories_and_toposes
https://github.com/HoTT/book
https://github.com/HoTT/book


Example: GitHub, a tool from software development, used for a math book

http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/


Math in the Age of the Turing Machine

There is more than “proofs are programs”!

Organising content and collaboration:
Hypertext and Wikis
No pressure to linearize,
easy large-scale micro-collaboration.
(Distributed) Version Control Systems (like Git).
Databases (with inference engines).

There is also the article by Thomas Hales about recent
developments in computer-checked proofs, titled “Mathematics
in the Age of the Turing Machine”

http://www.w3.org/WhatIs.html
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Distributed_revision_control
http://arxiv.org/abs/1302.2898
http://arxiv.org/abs/1302.2898
http://arxiv.org/abs/1302.2898


Example of a mathematical database: OEIS

https://oeis.org/search?q=0,1,4,6,13
https://oeis.org/search?q=0,1,4,6,13


Example of a mathematical database: LFMDB

http://www.lmfdb.org/EllipticCurve/Q/32.a3
http://www.lmfdb.org/EllipticCurve/Q/32.a3


From Documents to Knowledge Models

Computers make feasible the maintenance and sharing of the
underlying mental models behind documents.

Documents
are static, can be cited.
have logical structure; meaningful parts can be cited.
are linear, can be printed.
are packaged, can be exchanged.

Mental models...? =⇒ Knowledge models!
A comparison of the features of a document with those of
knowledge models can be found in an article by Max Voelkel,
titled “From Documents to Knowledge Models”

http://xam.de/2007/doc2km/2007-03-28x30-WM-voelkel-From-Documents-To-Knowledge-Models-final.pdf
http://xam.de/2007/doc2km/2007-03-28x30-WM-voelkel-From-Documents-To-Knowledge-Models-final.pdf
http://xam.de/2007/doc2km/2007-03-28x30-WM-voelkel-From-Documents-To-Knowledge-Models-final.pdf


Example of a Knowledge Model: the nLab wiki

http://nlab.mathforge.org/nlab/show/syntax-semantics+duality
http://nlab.mathforge.org/nlab/show/syntax-semantics+duality


From Documents to Knowledge Models

Main problems with knowledge models:
How to cite a model and parts of it?
How to linearize (e.g. for printing)?
Which text format, if not TeX?
How to handle versions?
How to package a model or parts?
There is no standard approach yet.



Example of a Knowledge Model: the Stacks Project

http://stacks.math.columbia.edu/
http://stacks.math.columbia.edu/


Example of a Knowledge Model: the Stacks Project, Tags

http://stacks.math.columbia.edu/tag/03XF
http://stacks.math.columbia.edu/tag/03XF


From Documents to Knowledge Models

There was another big problem, not long ago:
Math was mostly done with documents because of
(the restrictions of) TeX.
MathJax changed that.
Now we have a growing number of websites with readable
mathematical content.

http://www.mathjax.org/


In the far future

We will employ a computer whereever we can, so humans can
focus on the mathematics itself (discovery and communication).

A large core of “standard” material will be formalised.
It will be less work to formalise new research than it is now.
There will be IDEs for doing mathematics.
With autocompletion, style checking, type checking, ...
Textbooks will be in the form of hypermedia.
Research will be communicated as knowledge models.



Change everything?

We won’t change everything over night.

Two directions of change:
Bottom-up:
formalise mathematics from the first definitions on.
Top-down:
add semi-formal metadata to a subdomain of mathematics.



Examples around Topological Spaces

Bottom-up: formalise what a space is in some system,
formalise theorems and proofs. Now you can verify proofs.
Top-down 1: formalise which theorems use which other
theorems (just search for \ref commands in your tex file).
Now you have a dependency graph.
Top-down 2: compile a list of space properties and
implications and counterexamples. Hook up a simple
inference engine, get “new” theorems.
Top-down 3: ...

In some areas of mathematics, the top-down approach might
have a better ROI at the moment.



Example of a semiformal Knowledge Model: π-Base

http://topology.jdabbs.com/
http://topology.jdabbs.com/


Example of a semiformal Knowledge Model: π-Base, an item

http://topology.jdabbs.com/properties/3
http://topology.jdabbs.com/properties/3


Examples around Morphisms of Varieties

In algebraic geometry, one considers (after Grothendieck)
the principal player to be the morphism, not the object.
There are many properties a morphism of algebraic
varieties (or schemes, spaces, sheaves, stacks) may enjoy.
On the set of such properties, logical implication gives a
partial order. For every term P =⇒ Q one may either give a
counterexample or a reference to a proof in the literature.
This yields an annotated graph.



Example: A Diagram of Properties of Morphisms of Varieties



Mockup for an “AG-Base” tool



Open Questions

What else could be done with the π-base software?
Spitters suggests an instance for algebraic structures.
How could we ideally encode more complex domains for
properties? e.g. spaces and maps between spaces.
How could one encode the mathematical foundations (with
or without AC...)?
How should one use Isabelle or Agda together with π-base?
How can one make the data from a π-base instance more
accessible for others by using established MKM standards?

https://github.com/jamesdabbs/pi-base.hs/issues/41


Conclusion

Since formal proofs are programs, we can borrow tools from
software engineering.
Flexible knowledge models may often replace documents.
Some low-hanging fruit is waiting in top-down formalisation.
You should try out some new tools and help making them
better, with feedback, content or code.
Interested in π-base? Get in touch with James Dabbs!
Interested in AG-Base?
Get in touch with Daniel Harrer or me!

https://github.com/jamesdabbs/pi-base.hs
http://www.konradvoelkel.com/homepage/contact/


Thank you for your attention.


	Overview
	Type Theory and Proof Assistants
	Homotopy Type Theory
	The Software Development Approach
	From Documents to Knowledge Models
	Future Tools
	Bottom-up vs. Top-down
	Counterexamples in Topology
	Morphisms of Varieties

	Open Questions and Conclusion

