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INTRODUCTION

Groups arise as symmetries of objects and we study groups by studying their
action as symmetries on geometric objects, such as vector spaces, manifolds and
more general topological spaces. One particularly nice type of such geometric objects
are homogeneous spaces.

For example, the general linear group GL, and the symmetric group .S,, arise
naturally in many contexts and can be understood from their actions on many
different spaces. Already for GL,, there are several incarnations: as finite group
GL,(F,), as Lie group GL,(R) or GL,(C), as algebraic group R +— GL,(R).

As first approximation, we should think of homogeneous spaces as topological coset
spaces G/H where H is a subgroup of G. A symmetric space is then a homogeneous
space with the property that H is the fixed set of an involution on G. There are
other, better and more precise characterizations that we’ll use. For example, a
Riemannian manifold which is a symmetric space can also be characterized by a
local symmetry condition.

Any space with symmetries, i.e. a G-action, decomposes into its orbits, which
are each homogeneous spaces. This in itself is the strongest motivation to study
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homogeneous spaces, and it gives reason to not look at homogeneous spaces in
isolation, but also in the broader context of G-spaces. Another good reason is that
many homogeneous spaces pop up as parameter/moduli spaces. Last but not least,
they make good examples to compute something or test a theory.

We will spend some time at the question “what kind of matrix groups are there”
since it is one more-or-less answerable version of “what kind of groups are there”,
and this comes strictly before asking “what kind of homogeneous spaces are there”.
In fact, the best answer one can look up in the literature is just for homogeneous
spaces under matrix groups. Technically behind this is the study of the adjoint
action, Lie algebras and root systems on one hand, and forms of varieties on the
other (though that aspect will play a minor role for us). It will also show us a close
analogy between differential geometry and algebraic geometry. The local structure
of homogeneous spaces is explained by slice theorems, and the global structure is
often studied by using compactifications, since compact homogeneous spaces are
particularly easy to handle.

There are many advanced topics around homogeneous and symmetric spaces we
won’t be able to discuss due to simple time reasons, but we will try hard to get
a good foundation for many topics relevant to the Graduiertenkolleg. Some first
outlooks will be presented at the end of the seminar.

We will quickly recollect some formalities (“Basic Definitions”), so that we can
spend the seminar time on geometry. This is expected to be more or less well known,
although probably in a different presentation than what you're used to. Some of
this material was also covered by recent past seminars. Be warned: the style of the
following section should not encourage anyone to give talks like this. The following
section has precisely the purpose of getting such abstract nonsense out of our way
as soon as possible.

Basic Definitions. We assume the participants to be familiar with abstract
group actions, the definition of Lie groups, algebraic groups and Lie algebras
and (co)tangent spaces in differential and algebraic geometry.

1. Homogeneous Objects in a Category. In the following definition, think of C being
the category of topological spaces, manifolds, complex manifolds, algebraic varieties,
rigid analytic varieties, sets, simplicial sets or set-valued sheaves on a topological
space.

Definition 1. Let C be a category with products and final object pt and G a
group object in C with multiplication morphism p: G x G — G, inverse i: G = G
and neutral element e: pt — G (the group axioms can be phrased as commutative
diagrams). A left action of G on an object X of C is a morphism p: G x X — X
which satisfies p(u(g, h), ) = p(g, p(h,x)). A right action of G on X is a morphism
p: X x G — X which satisfies p(z, u(g,h)) = p(p(z,g),h). An object X with a
G-left action is called a G-object, written G O X and a C-morphism f: Y — X
between G-objects G O X, G OY is G-equivariant if f(p(g,y)) = p(g, f(y)). The
G-objects together with the G-equivariant morphisms form a category GC. Via the
trivial G-action p = proj: G x X — X, the category C is a subcategory of GC.

Note that a left action gives rise to a right action by letting the inverse act (and
vice versa). Nevertheless, it is important to keep track of the direction of an action,
otherwise one gets very wrong formulae.

Definition 2. For any element z: pt — X we have the orbit morphism o :=
p(,x): G =G x pt = X. The kernel of the orbit morphism (i.e. the equalizer of
owithzom: G — X, for m: G — pt) is called the stabilizer or isotropy group
G, — G at x. If the orbit morphism is an epimorphism, we call the action transitive
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and (X,z) a homogeneouos G-object with basepoint x. If the stabilizer is just
the neutral element, X is called a principal homogeneous G-object.

Note that a principal homogeneous G-object is isomorphic to G, but this isomor-
phism depends on the basepoint (this sentence has to be taken with a grain of salt,
which concerns the issue of “forms” below; we will sweep it under the rug for now).
In this sense, principal homogeneous G-objects are like groups who forgot their
neutral element, which is why we won’t write X = G. In a principal homogeneous
object X, one can form quotients ¢: X x X — G, written z\ y = ¢, uniquely defined
by p(q(z,y),z) =y (i.e. g.x =y). Inverses would be y \ e, which are not available
in X due to lack of neutral element.

Ezample. Affine n-space A" is a (G,)™-principal homogeneous variety, where G, is
the additive algebraic group R — G,(R) := (R, +).

Definition 3. Let C be a category with products and a topology given by coverings
{U; — X} for each object X. A morphism E — X is a fiber bundle with fiber F' if
it is locally on X a product, i.e. there is a covering {U; — X} such that F|y, — U;
is isomorphic to proj: F x U; — U;.

If we fix an action G O X (the trivial one, if nothing else is available), a fiber
bundle F — X with action G O E such that E — X is G-equivariant, is called a
G-bundle. If the action on one fiber E|, (therefore on each one) is transitive, we
call E — X a G-homogeneous bundle. If the stabilizer of one fiber E|, in each
connected component (therefore of each fiber everywhere) is trivial, we call E — X
a G-prinicipal homogeneous bundle.

Note how bundles over the final object pt of C give back the notion of (principal)
homogeneous objects. For a G-bundle, each fiber E|, is isomorphic to F' and carries
a G-action, but the different local trivializations may give F' different (isomorphic)
G-actions. For a principal homogeneous bundle, the fiber is isomorphic to G, but
not necessarily in a unique way.

2. Quotients. For a topological group G acting on a topological space X, we can
always form the quotient X — X /G which can be defined as the coset space with
the final topology for the map X — X/G, or intrinsically:

Definition 4. An orbit object of G O X in C is the coequalizer of proj: G x X —
X with the action p: G x X — X (hence a quotient of X), which we write X/G if
it exists.

If an orbit object exists, it is unique up to unique isomorphism, but it doesn’t exist
in general. Moreover, it is very often non-trivial to show existence in a particular
case. The easiest example of these problems can already be observed for topological
groups: the quotient of a Hausdorff space needn’t be Hausdorff again.

If one cannot get orbit objects in a category, it is often desirable to enlarge
the category, for example with a universal cocompletion by passing to set-valued
presheaves (the theory of stacks, e.g. as used in moduli space theory, concerns how
one can still do geometry with certain objects in this larger category).

3. Forms. Given a field extension L/K (such as C/R or Q(i)/Q), one can extend
a variety X over K to a variety Xy := X Xg L over L. For an affine scheme
X = Spec(R) with R = Klz1,...,z,]/(f1,..., fr) this is just X = Spec(R®k L),
where R®y L = L[z, ..., z.]/(f1,--, fr)-

Given two different (non-isomorphic) rings R = Klz1,...,z,]/(f1,-.., fx) and
S = Klzy,...,z,)/(91,---,9%), it may happen that R ®x L and S ®x L are
isomorphic. The isomorphism is allowed to take coefficients in L, so it should not
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be surprising that there may be no isomorphism over the smaller field K. The same
happens for algebraic varieties.

Two varieties X,Y over a field K which happen to be isomorphic over L, i.e.
X7, =Yy, are said to be forms of each other, and X and Y are said to be K-forms
of XL.

It may also happen that an algebraic variety X over a field K has no R-points,
while some base extension X, does have points - so that X is not just the empty set.
A nice example is the equation 22 = —2, which has no solutions in the real numbers
but plenty over the complex numbers. The variety X := Spec(R[z,y]/(2? + y?))
has a form Y := Spec(R[x,y]/(2% — y?)), where the isomorphism over C is given by
x+— x, y+—> iy. The form Y has R-points, namely two lines.

This phenomenon is already visible for real and complex Lie groups, and it
frequently complicates and enriches the discussion of algebraic groups over more
general fields. One can systematically study the forms of a variety by Galois group
actions and their cohomology, actually another appearance of principal bundles. We
will try not to discuss forms of homogeneous spaces more than necessary for our
purposes.
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TALKS

The first third is about the differential-geometric picture around (mostly compact)
Lie groups and Riemannian symmetric spaces. The example of Grassmannians
will give us strong motivation because of their parameter space interpretation.
Riemannian symmetric spaces will be very important for the outlook, when we study
those Riemannian symmetric spaces which have a compatible complex structure -
Hermitian symmetric domains. We end the section on Lie groups with an overview
of the adjoint action and a discussion of root systems and Dynkin diagrams, an
important organising principle for compact Lie groups, linear algebraic groups, their
homogeneous spaces and completions.

The second third is about the algebro-geometric picture around (mostly linear)
algebraic groups. We will see which place semisimple linear groups (the nice ones)
have in the world of algebraic groups, and how to construct the quotient varieties
we want to study. The theory of compactifications will be introduced, which will be
used in the last part.

The last part is an outlook. First we discuss higher-dimensional uniformization,
where homogeneous spaces show up as universal covers. Then we look at period
domains in Hodge theory, which is another parameter-space story. After learning a
bit about Hermitian symmetric spaces in general, we come to quotients of them,
Shimura varieties, which are useful for arithmetic geometry. Finally, there are the
affine Grassmannians, which are infinite dimensional homogeneous spaces.

The general idea is that (almost) each talk should take half the time (likely the
first part) to present some implementation details, at best the most instructive
case of a proof or example for some phenomenon. The other half should be used
to present, in a concise way without complete proofs, an overview of the subtopic.
This way we will both have some microscopic as well as macroscopic picture of the
world of homogeneous spaces. If talks are prepared in pairs, make sure there is one
differential-geometric oriented person and one algebro-geometric oriented person in
the team, and prepare both parts of the talk together rather than in isolation (this
has been a recipe for very good talks in our seminar in the past).

There is not a single reference which covers the whole seminar, although several
books seem to try for this. For background reading on differential geometry, | ,
volume 2, in particular chapters X and XI] fits our purpose (and has a section on
Lie groups). For background on algebraic geometry, | | is a good contemporary
reference, and for more information you can always look at | |. Linear algebraic
groups are presented in many textbooks, one which is quite elementary is | |.
The background in Lie theory can be obtained from many books, e.g. | ]
Algebraic homogeneous spaces are discussed in detail in the monography | ]

Here are some additional sources which could be useful for preparation: | ]
for a low-level introduction to symmetric spaces, | ] and | | as a standard
reference, | | for a fast treatment of Lie groups, | | for a very detailed
treatment of Lie groups, | | also has a nice approach to Lie groups, which seems
to be useful for the seminar, | , Chapter 6] covers the analysis we might need,
[ | compares differential and algebraic geometry of homogeneous spaces.
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Part I: Lie Groups
1. Lie Groups. Give some examples of Lie groups, like S°, S1, §3, C*, G2, Spin
groups and whatever comes to your mind.

Mention Hilbert’s 5th problem, which asks if group objects in the category of
topological manifolds are more than just Lie groups. The answer is no: there exists
always exactly one analytic structure on such a group manifold which turns it into
a Lie group. Don’t attempt to prove this.

Introduce the notions of abelian, simple and semisimple Lie algebras and abelian,
semisimple and compact Lie groups, with examples. Give a brief overview on the
structure theorems regarding connectedness, simply connectedness, compactness
and commutativity.

Briefly sketch how the universal cover of a Lie group gets a Lie group structure
and remind us of the exponential map exp: g — G.

State and explain the Peter-Weyl theorem: Let G be a compact topological group.
A matrix coefficient is a function ¢ : G — C which factors into a G-representation
G — GL(V) composed with a linear functional End(V) — C. The set of all matrix
coefficients of G is a dense subset of the space of continuous complex functions
C(G,C)x equipped with the supremum norm. It follows from this theorem that
any compact Lie group can be embedded in some U(n), so is a matrix group, see
[ , Theorem 1.15] and even a Zariski closed group, therefore a linear algebraic
group!

Decide for yourself how much of the background for the Peter-Weyl theorem you
want to cover (Haar measures and orthonormal bases for L?(G) will likely be too
much to explain in detail).

2. Quotients. Discuss the problem of taking the quotient after Lie group actions on
manifolds. When/how does one get a (smooth) manifold structure on the quotient
space?

You should give some examples that show problems with quotients, like the plane
with coordinates x,y and the obvious Z/2-action on the z-coordinate.

Sketch a proof of the slice theorem (or, if you like, special cases of it): Given
a manifold M with smooth action by a Lie group G and any point z € M, the
orbit map G — M, z — gz factors through an injective map G/H — M. The
theorem states that this map extends to an invariant neighbourhood N of G/H
(considered as zero section) in G x g T, M/T,(Gx) so that it defines an equivariant
diffeomorphism N =~ N’ C M with Gx C N'.

You could also come up with an example which fails to have slices (you can find
such examples on MathOverflow).

As application, show that if a compact Lie group G acts freely on a manifold M,
then M /G has a manifold structure. The most important application is the action
of a subgroup H of G on G.

You can give some idea what to do if taking the quotient fails. One possibility is
the discussion of orbifolds.

The paper | | on the slice theorem for non-compact Lie group actions is still
readable, but there are better references, such as | | for the first proof for
compact Lie groups - and, more reader-friendly, | ]

3. Grassmannians. Grassmannians of all sorts play an important role in geometry
as parameter spaces. For example, the parameter space for linear subspaces of an
affine space A" is the projective space P*~!, which is a homogeneous space for GL,,.
Another prominent Grassmannian is the flag manifold GL, /B (where B are the
upper triangular matrices in GL,), which parametrizes complete flags of vector
subspaces in A™. These spaces are both complete, but there are also such parameter
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spaces which are not complete: the symplectic Grassmannians, which parametrizes
symplectic subspaces, or the oriented Grassmannians are such examples.

Start by discussing abstract parameter problems of flags of subspaces in vector
spaces with extra structure (such as a symplectic form, or orientation) with lots of
(familiar and less familiar) examples. Explain the group actions on these sets and
use the orbit map to get the structure of a homogeneous space on them. Relate the
CW complex structure on the homogeneous spaces with the parameter problems.
This can also be related to the representation-theoretic interpretation of the cell
structures.

Discuss bundles and equivariant bundles over these spaces and (related to that)
their interpretation as parameter spaces (classifying spaces) for certain bundles.
This also gives us a relation between BG and some G/H.

Discuss the fiber sequences H - G — G/H and G/H — BH — BG. In
[ , Chapter III], the Serre spectral sequence is used to do some computations
cohomology of classical groups and their homogeneous spaces. You can try to explain
some of this (without spending too much time on spectral sequences).

You can also mention | ], which shows that the spectral sequence methods
work even for “homogeneous spaces under loop spaces”.

4. Riemannian Symmetric Spaces. For this talk, a good discussion of the

various aspects (and further references) are to be found in | ], which can be
quoted: “Riemannian symmetric spaces are the most beautiful and most important
Riemannian manifolds”. A detailed monography is | |-

Define symmetric spaces as smooth manifolds which are homogeneous spaces
of the form G/H such that there exists an involution on G which fixed points H.
Define Riemannian symmetric spaces as symmetric spaces with Riemannian metric
or alternatively, as Riemannian manifolds which has at each point an involutive
isometry which locally fixes exactly the point.

Give some examples of Riemannian symmetric spaces, such as R™, S™ H"
(real hyperbolic space), any compact Lie group (such as SO(n)), SU(n)/SO(n),
SL,(R)/SO(n), OP? (the Cayley plane) and/or whatever you think could be
instructive. Introduce the rank of a symmetric space.

Prove that the two definitions of Riemannian symmetric spaces are equivalent.

While there is still no classification of all symmetric spaces available, one can
classify simply connected irreducible Riemannian symmetric spaces. Discuss briefly
what kind of classification one gets, in particular the distinction of compact versus
noncompact versus euclidean type. The irreducible simply connected symmetric
spaces are the real line, and exactly two symmetric spaces corresponding to each
non-compact simple Lie group G, one compact and one non-compact. The non-
compact one is a cover of the quotient of G by a maximal compact subgroup H,
and the compact one is a cover of the quotient of the compact form of G by the
same subgroup H. This should also provide motivation for the following talk.

Recall the definition of the curvature tensor of a Riemannian manifold, with
some instructive example like the 2-dimensional sphere of radius . Mention that
sectional curvature determines Riemannian curvature and how sectional curvature
can be understood intuitively from understanding curved surfaces - to give at least
a vague idea what information is captured by the curvature tensor to anyone who
hasn’t seen it before.

Show that the curvature tensor of a Riemannian symmetric space has to be
parallel. Show that a parallel curvature tensor implies that the universal cover is a
symmetric space.

After this talk, we will meet Riemannian symmetric spaces again in Part III.
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5. The Adjoint Action. To understand the vast amount of homogeneous spaces
one first has to get an overview of the many groups that may act on spaces. There
is a very good classification theory for compact Lie groups and for split semisimple
linear algebraic groups, both in terms of the adjoint action, semisimple Lie algebras,
root systems and Dynkin diagrams. In some cases, a homogeneous space G/H may
then be characterized in terms of the root systems of G and H or even in terms of
an annotated Dynkin diagram.

In this talk, an overview of root systems, Dynkin diagrams and the classification
of semisimple lie algebras without proof and the consequences for (compact) Lie
groups should be presented, starting from the adjoint action.

Root systems in infinite series (all except the exceptional Gs, Fy, Eg, E7, Es):

® Dynkin diag. Lie algebra Reductive group Lie group

An — e o 5[n+1 SLn+1 PSU(’I’L + 1)
B, e eeb §02541 SO(n,n+1) SO(2n+1,R)
D, ”< 500 SO(n,n) PSO(2n,R)

(TikZ graphics adapted from Benjamin McKay) About this table: ® refers to
the root system (types are A, B,C, D, E, F,G, the index refers to the rank, which
is also the number of big dots in the Dynkin diagram), the Lie algebra is a simple,
semisimple one with root system ®, the reductive group and the Lie group are just
some examples that one can keep in mind.

Mention as motivation that the Dynkin diagrams ADE are also known for
classifying other mathematical structures, of which you may give some very brief
examples.

This talk should be given by someone who knows this theory in and out and can
present it in a memorable, pleasant way that helps.

The introduction in | , Section III, Chapter 1] gives some overview of
topics that would fit in this talk as well.
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Part II: Algebraic Groups

6. Algebraic Groups. To avoid unnecessary complications, we will only work over
perfect fields in this part of the seminar.

Algebraic groups come in two extreme flavours, and the mixture of both: affine
and projective. This is made precise by Chevalley’s theorem.

Give the formal definition of an algebraic group scheme, a linear (=affine) group
scheme and an Abelian scheme. Don’t spend too much time on drawing commutative
diagrams for the group axioms or the corresponding axioms for Hopf algebras (just
mention them). Give some examples, including the additive group G,, elliptic curves,
the multiplicative group G,,, algebraic tori (Gy,)", the general and special linear
groups GL,, and SL,.

Make very clear the difference between an “algebraic torus” C* x --- x C* =
(Gw)™(C) and a “topological torus” S* x --- x ST = T™ and a “complex torus” C"/A.

Explain the statement of Chevalley’s theorem | , Theorem 1.1.] (another
proof in | , Section 2]), but don’t attempt to prove it. Don’t spend too much
time on details of the fppf topology and keep in mind that we will discuss the Nagata
compactification later on, so that can be omitted as well.

As an example of “general” algebraic groups appearing in the wild, you can discuss
automorphism groups of algebraic varieties.

Give some examples of linear algebraic groups, preferably defined over various
base rings. Explain extension of scalars (base change). Introduce restriction of
scalars (Weil restriction) and mention (without proof) the important application
involving S := Resc/r Gm, whose real points have a Lie group structure isomorphic
to C*: the category of real Hodge structures is equivalent to the category of
S-representations.

Discuss complete homogeneous varieties under an arbitrary algebraic group: they
are always the product of an Abelian variety with a complete homogeneous variety
under an affine algebraic group (a flag variety, which is some sort of Grassmannian).
This is | , Theorem 1.3.1 and Theorem 4.1.1] As we will spend some talks
on linear groups, their quotients and completions, this should also motivate what’s
coming next.

7. Reductive Linear Algebraic Groups. Define radical and unipotent radical
of a linear algebraic group and provide examples.

Define reductive and semisimple linear groups and explain the short exact se-
quences involving the (unipotent) radical of a group and the quotient, which basically
justifies looking at semisimple linear groups and unipotent groups in isolation for
many questions.

A short verbal remark on the complications in positive characteristics (reductive
vs. linearly reductive) should suffice for our purposes.

Define Borel subgroups and (maximal) tori and give some examples (at best not
only SL,, and GL,; maybe orthogonal groups are nice). Give examples of parabolic
subgroups in GL,,.

Explain the statement of the Bruhat decomposition G = [[ .y BwB, with a
short proof sketch assuming most of the machinery of reductive groups. Connect
this to the discussion of CW structures of Lie groups if you know how to.

Sources are | ] or | | (and many more like these). It would be a good
idea to look into | ] to see what the following talk might use.

8. Quotients by Algebraic Groups. Explain how Hilbert’s 14th problem arose
from discussing quotients.

Explain the notion of categorical, geometric, good quotients after an algebraic
group action, as defined in [ ]
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While one could describe a general procedure of taking quotients which leads to
stacks that in some rare cases turn out to be algebraic varieties, we will instead first
look at some nice cases where we end up with an algebraic variety, with a much
easier construction.

Let G be a linear reductive group. For any affine G-variety X, one has a good
quotient X/G. In particular, G/H exists for any linear group G with subgroup H.
A good presentation of this is [ , Section 1.2].

For H any closed subgroup of a linear group G, the quotient G/H exists and
is quasi-projective. This is proved in | , Chapter 5.5, p.91-97|, along other
interesting facts about these quotients, for example that the quotient by a normal
subgroup is again a linear group.

Call a subgroup P C G parabolic if it contains a Zariski-closed maximal connected
solvable subgroup (i.e. a Borel). The quotient G/H is a projective variety iff H is
a parabolic subgroup (which is why this is often taken as definition; you may also
take this as definition, but make sure to state the other characterisation as well).
The proof is not difficult, but also not that important for us.

A very comprehensive source on algebraic quotients, from a GIT viewpoint, is
[ , Section IJ.

If there is still time left, one could explain more of the GIT approach, in particular
its motivation and where it is employed.

9. Compactifications. The theory of equivariant embeddings of algebraic tori
(Gm)™ is the theory of toric varieties, which may also be understood combinatorically
by glueing products of affine spaces and tori together. This can be done for a larger
class of linear groups than just for tori, but the combinatorics get much more
complex. This culminates in the Luna-Vust theory of spherical varieties. A crucial
step in the Luna-Vust classification theory is the classification of particularly good
embeddings (namely, smooth, complete, and with a good boundary behaviour)
of certain well-behaved homogeneous spaces, so-called wonderful varieties. The
historically first construction of such good completions were for symmetric spaces,
given by De Concini and Procesi. We will not look into Luna-Vust theory or toric
varieties in this seminar, but we will briefly discuss wonderful completions in this
talk.

Nagata’s theorem (not the strongest version) says: for any variety, there is an
embedding into a complete variety. There is also a version for morphisms. Sumihiro
developed an equivariant version for varieties with an action of a linear algebraic
group. In the case that the group is just a torus, one gets more information.
Completions are by no means unique, and some are better than others. Some nice
classes of equivariant completions are toroidal completions, simple completions and
wonderful completions. Toroidal varieties are a slight generalisation of toric varieties,
containing flag varieties as well.

For compactification theory, the notions of ample divisors and ample line bundles
are important, and in the business of equivariant completions, ample equivariant
divisors and G-bundles are as important, so it might make sense to formally define
these notions and give some easy examples. Maybe one should even recall the notion
of a proper morphism and a complete variety, just to be safe.

The original proofs for Nagata compactification are written with Weil’s founda-
tions rather than Grothendieck’s foundations for algebraic geometry, so instead one
could read | | where a modern proof is written up, or the notes of Brian Conrad
(unpublished, online) or Deligne’s notes as written up by Conrad. For the talk, the
proof will be too much, but some ideas and examples might be interesting (that’s
up to the speaker). Most importantly, the statement of Nagata compactification
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should be made very clear and the rough idea how ample divisors give projective
embeddings.

The original paper | | on equivariant completions is quite readable, a proof
sketch could be developed from it. In particular the local linearizability and the
equivariant Chow lemma in that paper might be interesting elsewhere. The rough
idea of making a divisor (or a bundle) equivariant and then obtain an equivariant
projective embedding should come across.

If you want to talk about toroidal varieties (or toric varieties) you may look at
[ , p-174-179], but that is very technical. It might make more sense to just
give some examples of toroidal completions, maybe just completions by flag varieties.
One thing which we should remember about toroidal completions is that they have
a universal property: each equivariant completion is dominated by a toroidal one.

Simple completions are defined by the property that they have only one closed
orbit. This nice property can not always obtained, i.e. not every space admits a
simple completion. If simple completions exist, then the class of simple and the class
of toroidal completions intersect in a single element, which is called the standard
embedding. If the standard embedding is smooth, it is called wonderful, and the
ambient space in which one embeds is called a wonderful variety. A good source is
[ , p-179-188]. We should at least see the statement of | , Theorem 30.15,
p.187], which we can take as intrinsic definition of wonderful varieties. We might
also get some idea how Dynkin diagrams can be upgraded to spherical diagrams,
which encode spherical systems, which in turn classify wonderful varieties, as stated
in | , Theorem 30.22, p.195]. Please don’t attempt to define spherical systems
in this talk. Try to avoid defining and discussing the notion of colors as well.

Part III: Special topics

10. Uniformization. In differential geometry numerous cases of homogeneous
spaces appear as universal covers. For example one can construct models of reals
manifolds whose universal cover exhaust all simply-connected projectively-flat biho-
mogeneous spaces. Restricting ourselves to Kéhler geometry, it again transpires that
important classes of compact Kéhler manifolds (X, w) are uniformized by symmetric
spaces. In the absence of the Hermite-Einstein metric on the holomorphic tangent
bundle Tx, which is readily available in dimension 1, in higher dimensions one
begins the search for an analogous statement (in the sense of uniformization) by
asking the K&hler metric to verify the Einstein condition. Here, a classical result
of Yau (and Miyaoka, in the case of projective varieties) asserts that a natural linear
combination of ¢?(X) (the square of the first Chern class of Tx) and cz(X) (the
second Chern class of Tx) is semi-positive with respect to w in the sense of the
inequality

[ 1) e2(3) - ) A ] 2 0,

which is nowadays referred to as the Miyaoka-Yau inequality. Now, it turns
out that any compact Kéhler manifold X verifying the Miyaoka-Yau equality is
uniformized by (basic examples of) symmetric spaces, namely the complex Euclidean
space (for example when X is Calabi-Yau with vanishing cs), the projective space
and the ball.

11. Dirac Operators on Homogeneous Spaces. In this talk, homogeneous
differential operators, in particular Dirac operators on homogeneous spaces will be
studied. We will hear about the Borel-Weil-Bott theorem.
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12. Period Domains. Period domains are parameter spaces for a polarized Hodge
structure of a fixed weight. They are quotients of Lie groups by compact subgroups
(but rarely maximal compact subgroups).

In this talk some motivation for looking at period domains should be given,
preferably with an easy example. It might make sense to recollect some material on
Hodge structures as well.

In | |, mostly in the third part, there is a lot of material and more
references, in particular propositions 4.3.2 and 4.3.3 as well as chapters 4.4, 4.5 and
5.3. Maybe | | will also help.

13. Hermitian Symmetric Spaces. Hermitian symmetric spaces are the natural
generalization of Riemannian symmetric spaces to complex manifolds.
Briefly discuss the classification of irreducible compact Hermitian symmetric
spaces by marked Dynkin diagrams:
A, e ex— o Grassmannian of k-planes in C**!
B, x— (2n — 1)-dimensional hyperquadric
(O — space of Lagrangian n-planes in C2”

*—e
(2n — 1)-dimensional hyperquadric

one comp. of the variety of max. dim. null subspaces of C?"

l
A1

the other component
complexified octave projective plane

its dual plane

f

the space of null octave 3-planes in octave 6-space

(TikZ graphics by Benjamin McKay)

Explain as much about noncompact Hermitian symmetric spaces as you like,
maybe include Borel embedding, Cartan decomposition, culminating in some
overview of the classification of Cartan domains.

Either in this talk or in the following the Baily-Borel or the Borel-Serre compact-
ification and its properties should be mentioned.

14. Shimura Varieties. Shimura varieties are quotients of Hermitian symmetric
spaces by a congruence subgroup of a reductive algebraic group over a number field,
so they are biquotients I'\G/H.

First remind the audience briefly of classical modular curves for congruence
subgroups of SLs, to give some motivation and context. Explain the interpretation
as moduli space for Hodge structures and the relation to period domains.

Give the definition of a Shimura datum and the associated Shimura variety. Give
at least one example.

15. Affine Grassmannians. “The” affine Grassmannian is an infinite-dimensional
object (an ind-scheme), which can be seen as the flag variety for the group G(k((t)),
where G is a reductive linear algebraic group over a field k& (so there are really many
affine Grassmannians) and k((t)) the field of formal Laurent series over k. The
group G(k((t)) can be interpreted as a group of loops of G(k).

This talk should introduce affine Grassmannians and discuss their significance in
representation theory.
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