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This talk introduces infinite loop spaces, {2-spectra and generalized cohomology
theories and shows how these concepts relate. While infinite loop spaces are precisely
the connective spectra, the main theorem in this talk is Brown representability, which
states that generalized cohomology theories are in bijection to §2-spectra.

By * := {pt} we denote the one-point space. All spaces are pointed CW complexes. All
homotopies will be basepoint-preserving. The symbol ~ means weak homotopy equivalence,
not homotopy equivalence or homeomorphism. Some definitions and propositions are slightly
more general than necessary for the theorems we prove, but in the end the model-categorical
framework should simplify things by exposing what really matters.

1 Loop Spaces

Definition 1. Let X be a connected space endowed with a morphism m : X x X — X and a
basepoint e : x — X. If the maps m o (id xe) and m o (e x id) are both base-point preserving
homotopic to e, X is called H-space (where the H stands for Heinz Hopf).

Example. Any topological monoid is an H-space. Note that a general H-space need not be
associative, not even up to homotopy.

Definition 2. Let Y be a topological space. Then the loop space over Y is the topological
space 2Y obtained as homotopy pullback of the basepoint inclusion along itself:

QY --» %

; —Y
Explicitly, this means QY = {y € Y5 | 7(0) = *} for a CW complex Y.

Lemma 1. The loop space QXY of any space Y is an H-space by choosing m : QY x QY — QY
to be any way of composing maps. Furthermore, the H-space structure doesn’t depend on m, up
to isomorphism of H -spaces. ]

Definition 3. Let X be a topological space. Then the (reduced) suspension of X is the
topological space ¥ X obtained as homotopy pushout of the constant map to the basepoint along
itself:
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Explicitly, this means XX = S' A X.
Question. How to characterize which H-spaces X are loop spaces?
Lemma 2. The functor X is left adjoint to  in the homotopy category:
(XX,Y] ~ [X,QY]
Proof. Follows from the basic adjunction Hom(S' x X,Y) ~ Hom(X,Y"5"). O

Definition 4. Any space X that admits a space Y such that X is homotopy equivalent to QY
is called a loop space. Such an X is called an n-fold iterated loop space if there are spaces
Yy for k=0,...,n such that X = Yy and Y ~ QYj 4 for all £ < n. An infinite loop space is
a space which is an n-fold loop space for all n € N.

Question. Which loop spaces are iterated loop spaces or even infinite loop spaces?

Ezample. Let m be a group, then the Eilenberg-Mac Lane space K(m,n) is a CW complex (unique
up to homotopy equivalence) such that m(K(m,n)) is m for n = k and 0 otherwise. Rather
trivially, given a K (m,n) you get a K(m,n — 1) by taking the loop space:

m, k=n-—1,

(2K (m,n)) = [S¥, QK (m,n)] = [S*", K (7, n)] = {o k#n—1.

This shows that a K(m,n) is homotopy equivalent to the loop space of K(m,n + 1), thus an
infinite loop space.

Question. How do infinite loop spaces arise “in nature”?

Fact. 1f C is a strict symmetric monoidal category then the classifying space BC = |NC| (the
geometric realization of the nerve) is an infinite loop space. In fact, all infinite loop spaces arise
from this “machine” and all such machines are equivalent in some sense (see May and Thomason:
“The uniqueness of infinite loop space machines” (1978)).

2 Spectra

Remark. You might have invented spectra: Try to construct a category where suspension is
invertible up to homotopy. You may motivate yourself by the fact that singular cohomology is
representable in the category of spaces (by an infinite loop space), but topological K-theory is
not. Try to define meaningful negative dimensional homotopy groups for the objects of such a
category of spectra.

Definition 5. A CW-spectrum is a sequence of CW complexes E,, indexed over the integers,
together with structure maps X F,, — E, 1 (where it is allowed that all negative terms E_,
vanish, of course).

Remark. There are various other definitions of spectra, together with definitions for morphisms
of spectra, and fibrations and cofibrations, such that there are a plethora of model categories of
spectra. Most of them are Quillen adjoint and thus yield isomorphic homotopy categories. We
don’t need this generality right now, so we restrict to a very restrictive class of spectra in the
following.



2.1 ()-spectra

Definition 6. An Q-spectrum F is a set of CW complexes E,, n € N, together with weak
equivalences F, — QF,; called structure maps. A map of ()-spectra f: £ — F'is a set
of morphisms (f, : E, — F,) such that the following diagrams commutes:

E, — QFn4

fn an+1

Fn T’ QFn+1

The category of 2-spectra is thus defined. Its homotopy category, given by inverting maps of
Q-spectra which are level-wise homotopy equivalences, is called the stable homotopy category
(of CW complexes).

Remark. One can always ensure that the structure maps are homeomorphisms by taking a
homotopy equivalent spectrum. We could have defined everything in a basepoint-free setting and
add basepoints later, that is also equivalent.

Proposition 1. The n-th space of an Q-spectrum is an infinite loop space.

Ezxample. The Eilenberg-Mac Lane spectrum is given by the spaces K (m,n). The complex
K-Theory spectrum is given by Z x BU in even degree and U in odd degree (it is an Q-spectrum
by Bott periodicity).

Definition 7. The homotopy groups of an Q-spectrum E = (E,,) are defined for integer degrees
n € Z as

Proposition 2. The homotopy groups of an Q-spectrum are always abelian groups.

Proof. Since m;(Ey) = mi+1(Fn+1), for all non-negative n the set 7_,(E) = mo(Ey,) = m2(Eni2)
is an abelian group and 7, (E) = m,(Ey) = mp4+2(F2) as well. d

Definition 8. An Q-spectrum F is called connective (or (—1)-connected), if all negative degree
homotopy groups vanish, i.e. if all spaces E,, (except possibly Fy) are connected.

Ezample. The Eilenberg-Mac Lane spectrum is connective, since all K(m,n) for n > 1 are
connected. On the contrary, the complex K-Theory spectrum with Z x BU in even degree and
U in odd degree, is clearly not connective.

2.2 From spaces to spectra and the other way around

Definition 9. Given a CW complex X, one defines its naive suspension spectrum to be the

sequence
X, =X"X

with structure maps the identity. By functoriality of X, this defines a functor X*° from CW
complexes to spectra.



The (non-naive) suspension spectrum is the spectrum
X, := colimy QFR"TF X

with structure maps the identity. It is an Q-spectrum (in contrast to the naive suspension
spectrum) and can be thought of as a cofibrant replacement of the naive suspension spectrum in
an appropriate model structure on the category of spectra.

Question. What is the suspension spectrum of Z x BU, the 0-th space of the K-Theory spectrum?
Proposition 3. Suspension spectra are connective S2-spectra.

Proof. Let X be a CW complex and n € N, n # 0. By definition,
T_n(X°X) = m(X"X)
which is a set with one element, since ¥ maps spaces to connected spaces. ]

Theorem 1. The naive suspension spectrum functor X is left adjoint (in the category of spectra)
to the functor 2°° from {2-spectra to spaces given by taking the 0-th space of a spectrum.
Furthermore, %°° has as image the full subcategory of connective 2-spectra and 2°° has as image
the full subcategory of infinite loop spaces.

Proof. Let X be a CW complex and E a spectrum. Since (2°° 0 ¥00)(X) = (¥ X))o = X, we
can easily define a projection map Homgpec (XX, E) — HomTep (X, Ep).

By associating to a map f : X — Ej its suspensions X¥f : ¥¥X — S*E, we get a map
HomTop (X, Ep) — Homgpec (2> X, X*°FEp), which we can compose with the map induced by the
inclusion X*° Ey — F to get an inverse of the projection map.

Since every connective spectrum F can be written as 3°°FEjy and every infinite loop space X
arises as (X*°X)o, the other statements are clear. O

Remark. The 0-th space of the non-naive suspension spectrum of a space X can be very different
from X itself, since it “sees” only the stable behaviour of X. For example, the Barratt-Priddy-
Quillen-Theorem says

Q*°x>*8% ~ Byt x 7,

where ¥°° denotes the non-naive suspension spectrum, Yo, the colimit of symmetric groups and
+ the Quillen plus-construction.

2.3 Other categories of spectra

Fact. On the category of Q-spectra, the smash product is not associative (only up to homotopy),
so -spectra do not form a symmetric monoidal category. To get rid of this defect, one needs
to modify the notion of spectrum and incorporate additional structure to keep track of the
braiding of the smash product. A good metaphor is that -spectra are an approach with
explicit coordinates (the natural numbers to index the spectrum), while other approaches are
coordinate-free in some sense. Two such approaches are F ring spectra and S-modules. We
won’t bother for now, as their stable homotopy categories are equivalent anyway.



3 Generalized Cohomology Theories

Morally, a generalized cohomology theory is a sequence of functors that behaves just like singular
cohomology H™, but may have different values on a point (and thus on everything).

Definition 10. Let F™ : CW — Ab be a sequence of functors from the category of CW complexes
to abelian groups, indexed with n € Z. The sequence (F™) is called a generalized reduced
cohomology theory on CW complexes, if the following 3 axioms hold for each n and the
fourth axiom holds, too:

1. (Weak) Homotopy: F" is invariant under basepoint-preserving weak homotopy equiva-
lence, and as such factors through the pointed homotopy category of CW-complexes.

2. Wedge Sum: F" maps coproducts to products, i.e.

Fr(\/ Xa) = [[ F"(Xa).

3. Mayer-Vietoris: Let X = AU B be a union of subcomplexes which each contain the
basepoint. If a € F"(A) and b € F"(B) restrict to the same element in F"(A N B), there
exists an element = € F™(X) which restricts over A and B to a and b, respectively.

4. Exactness: For each CW pair (X, A) there is a long exact sequence
oo FY(X) = FY(A) = FM(X,A) S P (X) -
where we write F"(X, A) for F"(X/A).

Fact. From the knowledge of all F"(S°) one can derive F"(S*) and from the knowledge of the
attaching maps of a CW complex X one can derive F™(X) for all X. So the coefficients pin
down a cohomology theory.

Ezxample. Reduced singular cohomology H (+; R), with coefficients in a ring R, is a generalized
reduced cohomology theory on CW complexes (by putting H"(-; R) := 0 for all n < 0), with
coefficients H°(S% R) = R and H"(S% R) = 0 for n # 0.

Remark. The axioms “Wedge Sum” and “Mayer-Vietoris” can be read as “homotopy coproduct”
and “homotopy pushout”. Given the fact that any colimit may be built out of coproducts and
pushouts and from this one can get the same for homotopy colimits, one might subsume the
axioms under the homotopy colimit axiom: F™ should convert homotopy colimits into limits. It
is an exercise to see that this is a necessary property for a functor to be representable in the
homotopy category. It is easy to see that a representable functor can never map colimits to limits,
because weak equivalences might change them, so one really has to work with homotopy colimits.
A sufficient definition of the homotopy colimit of a diagram D is, take the functorial cofibrant
replacement of the model category (for example, CW approximation for spaces and mapping
cylinder constructions to replace all maps by relative CW complexes) to get a diagram D’, then
apply the classical colimit. The wedge product is the coproduct and homotopy coproduct in the
category of CW complexes.



3.1 From spectra to cohomology theories

The goal of this section is to show that any 2-spectrum FE defines a generalized cohomology
theory by E™ := [, E,].

Proposition 4. Given a CW complex K, the contravariant Hom-functor [-, K] in the basepointed
homotopy category satisfies the axioms 1-8 of Definition 10.

Proof. Homotopy Invariance is built into the definition. Given a diagram D in CW, we can
choose a functorial cofibrant replacement D’ and then colim D’ = hocolim D, so we have

[hocolim D, K| = [colim D', K| = mo(Map(colim D', K))

= mo(lim Map(D', K)) = limmg(Map(D', K)) = lim[D’, K] = lim[D, K].
U

Remark. To state the latter in more geometric terms: The wedge sum axiom is trivial by the fact
that a map \/, Xo — K is the same as a set of maps X, — K. To show the Mayer-Vietoris axiom,
take a CW complex X with subcomplexes A, B containing the basepoint, such that X = AU B.
Let a € [A, K] and b € [B, K| such that a|anp = b|lanp. Choose maps «, 3 representing a and b.
We can always choose 8 such that « = 8 on AN B, since every basepoint-preserving homotopy
of B over AN B can be written as continuous map (AN B) x I — K and thus extended to a
map B x I — K by the constant homotopy over B\ A. So we have continuous maps that glue
together over X to a map that yields the desired homotopy class.

Definition 11. Given a morphism f : X — Y of spaces, the mapping cone of f is the space
obtained as homotopy pushout of f with the identity on X:

X Y
| :
X - O(f)

Explicitly, C(f) is a quotient of the mapping cylinder ((I x X)[[Y)/((0,z) ~ f(x)) by
(1L,z) ~ (1,2").

Lemma 3. Given a relative CW complex f : A — X, there is a long cofiber sequence (also
called Puppe sequence)

AL x o) szAaZlsx S xo() - -

such that the application of the covariant Hom-functor |-, K] into some H-space K gives a long
exact sequence

(4, K] L5 (X, K] [0(f), K] (94, K] 25 (82X K] [50(f), K]+ -
Proof. The cofiber sequence is built by the procedure of subsequent mapping cone constructions:

AL xS omh oS om s o) s



where we have C(g) ELNFS (h) homotopy equivalent to XA >\ 91X and © (h) &5 C(f1) homotopy

equivalent to XX RN Ve, (f), which can be seen quite explicitly by drawing pictures of the maps
collapsing cones.

The loop space structure on K gives [X, A] and [X, K] a group structure and f* is a group
homomorphism. It suffices to check exactness of

1A, K] <~ X, K] & [O(f), K].

Since f*og* = (go f)* and C(f) is homotopy equivalent to X/A, f* o g* maps homotopy classes
a € [C(f), K] to homotopy classes in [A, K] which factor through X/A, and therefore are trivial.
Given a homotopy class g € [X, K] such that f*§ € [A, K] is trivial, the homotopy can be used
to extend 3 over C(f) to yield a homotopy class in [C(f), K]. This establishes exactness. [

Theorem 2. Given an Q-spectrum E = (E,), the functors E"(-) := [, E,] for n > 0 and
E"(+) := limy_00[Y¥ X, B, 41 for negative n form a generalized cohomology theory.

Proof. We have the first three axioms by Proposition 4. To get the fourth axiom we use Lemma 3
to get for n > 0:

(X, Eny1] — [A, Ena] — [X/A, En1] — [2X, By = [BA, Ey] — [2X/A, Epy]

~] ~] ~]
(X, QEn 1] — [A,QEp 1] — [X/A, QEp 4]
~] ~] ~]

[Xv ETL] - [A7E’ﬂ] - [X/A7En]
For fixed negative n, we use the fact that, for any m > —n:

E"(X) SFX, Enir] ~ [E™X, Enym]

= lim

k—o00
so we can use what we already have for positive n by considering ¥*X for large k instead of
X. O
Remark. The last trick amounts to “continuing the long exact sequence obtained from the cofiber
sequence indefinitely to the left, too”.

Ezxample. The Eilenberg-Mac Lane spectrum gives singular cohomology, as you can see from the
coefficients
m, n=020,

E”(SO) B [SO7K(7T’”)] = mo(K(mn)) = {0 otherwise.

The K-Theory spectrum (Z x BU,U,...) gives complex K-Theory (by the same argument),
but one can observe that complex K-Theory actually has non-vanishing cohomology groups in
negative degrees.

Lemma 4. The long exact sequence axiom is equivalent to the conjunction of these two:

a) For each relative CW complex i : A — X, and each n € 7Z, this sequence is exact:
E"(C(i)) - E"(X) — E"(A)
b) For each CW complex X and each n, there is an isomorphism, natural in X :

E"(X) ~ E"(2X).



3.2 Brown representability

In this section, we show that a generalized cohomology theory E°® is the same thing as an
Q-spectrum F,, which is a theorem of Edgar Brown (1962).

Lemma 5. Let h : HoCW — Ab be a functor that satisfies axioms 1-3, then

a) any relative CW complex i : A — X yields an exact sequence

h(C(i)) = h(X) — h(A)

b) h(pt) =0

Proof. The sequence comes from functoriality of A. The inclusion Im C Ker holds since the
composition A — X < (i) is nullhomotopic. The inclusion Ker C Im can be proved by
decomposing C(i) = Y U Z in two subspaces, Y a smaller copy of CA and Z a smaller copy
of the mapping cylinder M (7). Since the mapping cylinder deformation retracts onto X, every
x € h(X) extends to z € h(Z) and if = retricts to the trivial element of h(A), z restricts to the
trivial element of h(Y N Z). By Mayer-Vietoris this yields an element of h(C(7)) that restricts to
2z € h(Z) and hence to x € h(X).

For the second claim: The inclusion map X < X V pt induces the projection map h(X) x
h(pt) — h(X), which can be composed with the isomorphism h(X) = h(X V pt) >~ h(X) x h(pt)

to yield the identity h(X) —— h(X), so the projection h(X) x h(pt) — h(X) must be an
isomorphism, too. O

Lemma 6. From Lemma 4 we know that the exactness axiom can be replaced, given the other
axioms, by natural isomorphisms

E"(X) ~ E"(2X)

Theorem 3 (Brown Representability). Every (reduced) generalized cohomology theory (on base-
pointed CW complexes) E™ is represented by an Q-spectrum F,, which is unique up to homotopy
equivalence:

E™M(X) ~ [X, Ey].

The proof (following Hatcher) consists of constructing n-universal pairs for each E* by attaching
cells inductively, to show that this yields a m,-universal pair in the homotopy limit, to prove that
a me-universal pair is universal and finally to stick the representing spaces together to a spectrum
representing F.

Definition 12. Let h be a functor that satisfies axioms 1-3 of a generalized cohomology theory,
i.e. a functor h : HoCW — Ab that maps homotopy colimits to limits. A pair (K, u) consisting
of a CW complex K and a class u € h(K) are said to be

e universal, if for every CW complex X, the pullback [ X, K] QMO h(X) is an isomorphism;

()" (u)

e n-universal, if the pullback m;(K) h(S%) is surjective for i < n and has trivial

kernel for i < n;

e m.-universal, if it is n-universal for all n € N.



Remark. Admitting a universal pair is equivalent to being representable: if A is representable by
K we can define u to be the image of the identity idg under [K, K| = h(K). The data of a
universal class u is therefore equivalent to a chosen natural transformation [-, K| == h.

Lemma 7. Given any pair (Z,z) with Z a connected CW complex and z € h(Z), there exists an
n-universal pair (K, u) for h with Z a subcomplex of K, and u|z = z.

Proof. We construct K, inductively from Z by attaching cells. Let

Ki:=2zv \/ S,
ach(S1)

then K7 is connected and h(K1) = h(Z) % []oencsy) h(S') and we can choose u; € h(K7) to be
u1]|z = z and u1|g1 = . The pair (K7,u1) is 1-universal, since 0 = mo(K1) A, h(SY) has trivial

kernel and 71 (K7) 4, h(S%) is surjective by construction.

For the inductive step, represent each element o € Ker (7, (K,,) — h(S™)) by a map fq : S™ —
K" andlet f =V, fa:V, Sy = K,. The mapping cone C(f) is obtained from K, by attaching
(n + 1)-cells along the f, and we define

Kop=C(f)v \/ S5
BeR(S 1)

The mapping cylinder M(f), of which C(f) is the quotient by \/,, S, deformation retracts to K,
80 U € h(Ky) = h(M(f)). By the definition of f, this u, € h(M(f)) restricts to uyly_gn =0,
since f was built this way. The exactness property of h (Lemma 5) gives an element w € h(C(f))
which restricts to up, on Ky. From h(Kni1) = h(C(f)) x [lgep(sn+1y h(S™*1) we see that w
extends to up 11 € h(Kp11) such that u,i1]c(p) = w and un+1|sg+1 = (. The pair (K41, Un+t1)
is now n-universal since homotopy groups in dimension < n depend only on the n-skeleton, which
we didn’t change. It is also (n + 1)-universal, as we can obtain from the following commutative
diagram:

mi(Kp) — mi(Kpg1)
NS
h(S%)

Since K41 is obtained from K, by attaching (n + 1)-cells, the upper map is an isomorphism
for ¢ < n and a surjection for ¢ = n. From the induction we know that the left map has trivial
kernel for ¢ < n and is surjective for ¢ < n. The kernel of the right map is trivial for ¢ = n, since
any element of the kernel would come from m;(K,,) by surjectivity of the upper map, would be in
the kernel of the left map by commutativity, and thus has to be killed by the upper map, since
we attached cells to K, that kill all of the kernel of the left map, to obtain K, 1. For i =n+ 1,
the right map is surjective by construction. O

Question. This was one case, where an injectivity condition follows from some surjectivity one
level below. Can you formalize when such a pattern occurs?

Lemma 8. Given any pair (Z,z) with Z a connected CW complex and z € h(Z), there ezists a
m-universal pair (K,u) for h with Z a subcomplex of K and u|z = z.



Proof. Let K := J,, Ky, this gives the right space. To obtain the class u, we refine this
description at the homotopy level by the mapping telescope, a certain homotopy colimit, of
Ky — Ky < ---. It is given explicitly by the construction

T:=|JKx[i,i+1] C K x [1,00)
7

and the projection T — K is a homotopy equivalence, since K X [1, c0) deformation retracts onto
T. From the property that h maps homotopy colimits to limits we can write h(K) ~ h(T) =
lim,, h(K,,) and the n-universal classes u, correspond to a class u € h(K). The pair (K,u) is
me-universal, as one can deduce from the following diagram:

i (Ky) — mi(K)
NS
h(SY)

For n > i + 1, the upper map is an isomorphism and the left map is surjective with trivial
kernel, and so must be the right map. O

Lemma 9. Let (K,u) be a m.-universal pair for h and (X,A) a CW pair. Then for each
x € h(X) and each map f: A — K with f*(u) = x|A there exists a map g : X — K extending f
with g*(u) = x.

Proof. Replacing K by the mapping cylinder of f, we can take f to be the inclusion of a
subcomplex. Let Z := X Uy K. By Mayer-Vietoris, there is z € h(Z) that restricts to x € h(X)
and u € h(K). From Lemma 8 we can embed (Z, z) in a m,-universal pair (K’,u’). The inclusion
(K,u) = (K',u') induces an isomorphism on homotopy groups since both are m,-universal, so
K’ deformation retracts onto K. This gives a homotopy relative A of the inclusion X — K’ to
some map g : X — K. We have ¢*(u) = z since v/ restricts to u over K and to x over X. [

Proposition 5. Let h : HoCW — Ab be a functor that maps homotopy colimits to limits. Then
a Te-universal pair (K, u) for a functor h is universal, hence by Lemma 8 there exists a universal
pair (K, u).

Proof. From Lemma 9 applied to A = pt we get a surjection [X, K] — h(X). For injectivity we
apply Lemma 9 to (X x I)/(x xI),X x 0I): If f5(u) = fi(u), take f to be fo, fi on X x 0I
and x := proj f;(u) = proj% fi(u). The lemma gives a homotopy from fy to fi.
Alternatively, we can proceed by induction over the cells to get for every finite CW complex
Z Uy e such that [Z, K] =% h(Z) an isomorphism [Z Us e™] =% h(Z Uy e™) from the long exact
sequences for [-, K] and h obtained from the cofiber sequence Z < Z Uy e” — S™*1 by applying
the 5-lemma. O

Proof of Theorem 3. Let E™ be a generalized cohomology theory. From Proposition 5 we have
universal pairs (K, u,) for each E™. It remains to show that the natural isomorphisms E™(X) ~
E"1(2X) correspond to weak equivalences K, — QK, 1. At least they correspond to natural
isomorphisms

(X, K, ~ E"(X) ~ E""(2X) ~ (X, Kpy1] ~ [X, QK 41]

which we call ®. From naturality we get for each map f : X — K,, a commutative diagram
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[Kn, Ky f* (X, K
P | 1@
[KTu QKTH—I] ?} [X7 QKn—l—l]

We have ¢, := ®(1) : K,, - QK41 as candidate for the weak equivalence we need. From
the diagram we see that ®(f) = f*e,, so ® is just composition with e,, so taking X = S and
remembering ® is a bijection shows that ¢,, induces isomorphisms on ;.

Regarding the group structure on E™(X) and the group structure on [X, K] ~ [2X, K,,11],
we can identify them since they distribute over each other: For maps f,g : ¥ X — K, 11, we have
(f+9)*=f"4+9": h(Kyt1) = h(XX) (which is proved by pulling back along fV g). O

Remark. If we define the internal mapping object in the category of )-spectra, for two Q-spectra
F,E to be [F, E],, := [F,X"E], then for any CW complex X we have

(X, E,] ~ [2%°X, E], = [E®X, X" E]

since the maps of spectra X*°X — E are uniquely determined by their 0-th term and can be
recovered from them, up to homotopy. This gives us the possibility to “represent” a generalized
cohomology theory E*® in the category of {2-spectra by

[5°X, E], = E*(X).

By extending every generalized cohomology theory to a functor on the stable homotopy category,
we can even say that we have a bijection

[F, E]le —» E*(F) for all spectra F.

Question. How much of Brown’s representability theorem carries over to a general (pointed,
simplicial?) model category?
Fact. Jardine proved in “Representability theorems for presheaves of spectra” (2011) that an ana-
logue of Brown representability holds for simplicial presheaf categories over pointed (co)complete
cofibrantly generated simplicial model categories that satisfy certain conditions (similar to those
holding for spectra).

On the other hand, there are examples of model categories for which Brown representability
fails.

3.3 Spectra and Homology

Remark. Similar axioms can be given for generalized homology and similar remarks apply to
singular homology.
One can also define a generalized homology theory Fo from an Q-spectrum E by

E, (X)) =m (X AE),

where X A E is the spectrum obtained from F by smashing each space E,, with X.
Fact. Given an Q-spectrum E = (FE,), the homology theory E, defined by it has vanishing
negative degree groups if and only if F is connective.

Remark. The corresponding theorem for cohomology is wrong, despite the fact that singular
cohomology makes it look like it was true. The cause for singular cohomology to have no negative
degree cohomology groups is different, though: the homotopy groups of Eilenberg-Mac Lane
spaces K (m,n) above n vanish.
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3.4 Shifts in the category of spectra

Definition 13. On the level of spectra, one can define a suspension functor ¥, which maps
a spectrum E = (E,) to the spectrum YE with (XE), = X(E,). One can also formally
desuspend by defining X1 E to be the spectrum with (X71E),, = Q(E,).

Proposition 6. Suspension and formal desuspension are inverse up to weak homotopy, so they
give tnverse functors on the stable homotopy category.

Proof. Explicitly, given a spectrum F, we compute
(Z7'8E), = QX(E,) and (ZX7'E), = 2Q(E,),
and conclude by using E,_1 ~ QF, as well as X E,, 1 ~ E,. ]

Theorem 4 (Vogt). The suspension as translation and the long sequences obtained by subsequent
mapping cone constructions

xLyLopdow~sx sy ~cy) -

define the structure of a triangulated category on the stable homotopy category.

Fact. The monoidal structure given by the smash product, is compatible, on the stable homotopy
category, with the triangulated structure, and associative and commutative (not on the category
of spectra, as defined above).
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