
title

Why and how to use distributed version control
systems for collaborations in math
A Git Howto for Mathematicians

Albert-Ludwigs-Universität Freiburg

Konrad Voelkel (konradvoelkel.com/git-for-math)
based on a talk in May 2015, Freiburg - published online Nov 2015

http://www.konradvoelkel.com/git-for-math

Intended Audience

We assume that you know nothing about VCS like SVN or Git.

You might be interested in it if you’re planning to write a paper
with someone else, or have a book project in mind. For example,
if you are currently a PhD student in mathematics.

If you already use software like CVS or Subversion, these slides
try to convince you to try out a superior software.

Goal of this talk

We want to
Understand the problems

1 problem 1: loss of data
2 problem 2: conflicts

See how not to solve them
Understand a solution

DVCS: distributed version control systems
Have some fun and learn a practical tool

Git

If after these slides you start a real Git tutorial, I reached my goal.

Why Should We Care?

In programming, systems like Git have changed the way people
work to a more efficient, more reliable workflow.

Formalized proofs are programs, so a human-readable
mathematical proof is reasoning about a (hidden) computer
program. That (called Curry-Howard correspondence) is the
abstract reason why Git should also help mathematicians.

There are already reports how Git is helping in the natural
sciences1. It seems as if investing some time to learn Git might
pay off quickly. Why not find out?

1Karthik Ram 2013, doi:10.1186/1751-0473-8-7

http://www.scfbm.org/content/8/1/7
http://www.scfbm.org/content/8/1/7
http://www.scfbm.org/content/8/1/7

Table of Contents

Introduction

Working Alone

Working With Others

Getting Your Collaborator to use Git

The Mathematics of Git

Micro Git Tutorial

Section 1: Working Alone

We will first concentrate on the situation where 1
person works on a document without others.

The Problem: Loss of data

If you work alone, your harddisk may crash. That’s why you
make backups. (You do make backups, right?)

Sometimes you want to remove a section of a document, only to
find out later that you wanted to keep something from it. Backups
help in these moments.

One way to backup something before removing it is commenting
out text. This is very convenient, so we generalize:

Ideally, every state of the data is preserved

Solutions to the Problem of Data Loss

Making frequent backups imposes upon us the burden to decide
at which point a backup should be made, and to figure out an
organizational scheme to later find a particular backup. This is
difficult.

The simple and effective solution instead is complete version
control - record every “single change”.

Preventing Data Loss: Version Control

It might seem odd to introduce version control systems as
backup solutions, which is strictly only true if one uses some
form of replication with it.

In our terminology, they are a sophisticated organizational
scheme for making backups - which makes very frequent
backups convenient.

In fact, version control systems work best with small changes.

We will come back to this point.

A Non-Solution: Many Files

Once you arrive at this point, it becomes clear
that something went wrong at the beginning.

Getting Rid of Many Redundant Files

If you happen to have several files for different versions of the
same document, you might want to know what actually changed.

$ diff document-version-A.tex document-version-B.tex

Yields output similar to this:

-An example of text which is changed.
+An example of additional text.
+
+An example of text which is changed, but only a little bit.

-An example of text which is removed entirely.

Exercise: reconstruct versions A and B of the text that have this diff.

Basic Theory of Version Control Systems (VCS)

Further reading for the theoretically-inclined:

O’Sullivan 2009
Löh-Swierstra-Leijen 2007
(in particular chapter 3 “Formal model”)
Löh-Swierstra 2014
“The semantics of version control”

(click on author names to open article)

http://cacm.acm.org/magazines/2009/9/38901-making-sense-of-revision-control-systems/fulltext
http://www.andres-loeh.de/fase2007.pdf
http://www.staff.science.uu.nl/~swier004/Publications/versionControl.pdf
http://www.staff.science.uu.nl/~swier004/Publications/versionControl.pdf

Some Practical Remarks on Using VCS

If you want to use VCS effectively and efficiently, you should:
Write each sentence on a separate line.
Learn to read and interpret diffs.
In longer documents, use separate files for chapters.
If you’re done with a particular task, commit.

Section 2: Working With Others

We will now look at collaborations,
where a group writes a document together.

The Problem: Merging

If 2 or more people write a document together,
the work of each person has to be merged into one document.

Collaboration requires merging.

The Problem: Merging - Sequential Approaches

One can work sequentially, i.e. first person 1 writes something,
then person 2 validates it and writes some more, then eventually
it gets back to person 1 to validate everything and write again.

This requires a lot of communication to coordinate the times and
exchange the data.

It is also really difficult to prevent person 2 from working while
person 1 has not finished. In pratice, one always has some form
of a parallel approach instead.

The Problem: Merging - Parallel Approaches

One can work parallely, i.e. everyone works at the same time
and at some point the stuff written down so far gets exchanged.
By some process, consensus is reached upon a common state
of data which is then distributed so that the next round of work
can begin.

This requires a lot of effort to reach the consensus.

If there are conflicts, i.e. two people worked differently on the
same lines of text, these paragraphs and those depending on
them have to be re-written during the merge process.

Linus Torvalds, Inventor of Linux

Linus Torvalds
photo reused under GFDL with permission of Martin Streicher, Editor-in-Chief, LINUXMAG.com

Some History of Linux

In the beginning, Torvalds got patches to the Linux kernel by
email. He did all the merging himself then.

Later, there was a loose “hierarchy” of people Torvalds trusted
for subsystems of the kernel.

In particular, they never used a CVS or SVN server!

Some Non-Solutions: Dropbox & friends

If you’re alone, Dropbox gives you a backup in the cloud, which
is better than nothing.

If you’re collaborating, Dropbox has a sharing feature. If you’re
working at the same time, it breaks.

That means, you’re forced to work sequentially or in different
files. Merging anything is entirely up to you.

Some Non-Solutions: CVS and SVN

If you’re alone, centralized version control systems like CVS and
SVN seem like a good idea.

If you’re working with others, you will need internet access to
your server, and your colleague will see every single change
right after you commit it.

So you won’t commit half-finished stuff, ever.

And you have to do large merges by hand.

The Real Problem: Merging Large Changesets

Merging two different changes of the same line of text (conflicts)
requires to decide for one of the two versions or re-writing it.

If there are several conflicts at once, solutions in one line of text
may depend on solutions in another line of text.

Therefore, the merging person has to keep the whole changeset
of both conflicting versions in his mind.

The larger the conflicting changeset, the higher the burden to
keep in mind and the higher the cost of possibly re-writing
everything affected.

There is no solution other than communication and hard work.

The Solution to the Problem of Merge Conflicts

Don’t merge large changesets!

Figure out a workflow in which there are only small changesets.

Figure out how to optimize the communication,
which is still necessary.

Distributed Version Control Systems (DVCS)

If everyone has his own repository, one can commit very often,
small changes.

This makes merges much less painful, most of the time almost
automatically.

One can use a cloud repo (e.g. GitHub) for backups and
synchronization.

Branches are really easy to use.

Practical Solutions

Now we will look into practical solutions

Linus Torvalds, Inventor of Git

Linus Torvalds
photo reused under GFDL with permission of Martin Streicher, Editor-in-Chief, LINUXMAG.com

Some History of Linux, second time

After a while maintining the Linux kernel, Torvalds wanted to use
version control after all. None of the systems available satisfied
his need for speed, so he set out to do it rightTM

A Particular Implementation: Git

Git is a DVCS (a distributed version control system).

Git is widely used and really fast.

Fun fact: you can even get a DOI for a Git repo:
guides.github.com/activities/citable-code/

https://guides.github.com/activities/citable-code/l
https://guides.github.com/activities/citable-code/l

A Particular Implementation: Git, its workflow

With Git, the repository you work on is always
100% yours, on your harddisk.
You may also use some cloud provider for backups.
The originally intended workflow is not to connect to some
central repository where others have write-access, although that
will also work well, at least with a small number of collaborators.

The intended workflow is the “branch-pull” model, where you
develop/write any distinct new “feature” (like a book chapter or
reworking of a proof) on a branch that you then offer your collaborators
to pull, i.e. merge into their repository.
In theory, there are at least as many branches of a project than people working on it. In practice, one might decide to
put together a single branch for publication. There is no need to kill other branches, though.

A Particular Cloud Provider: GitHub

GitHub is a website where you can have an account and as
many publicly readable Git repositories as you like.
If you have a university email address, you can have 3 private
repositories, too.
More private repositories cost money.
GitHub offers, additionally to a Git repository (cloud) things like
an issue tracker, a wiki, some statistics, a text editor and more.
While an issue tracker is essential for larger software projects
and a wiki can be very useful for documentation, most of these
tools are not necessary for usual collaborations in mathematics.

An Apology

While Git and GitHub are nice, they are not the only game in
town - just the most popular.

Other DVCS like Git include Mercurial and Darcs. It is said that
Mercurial is easier to learn and Darcs makes more sense
mathematically (the documentation is full of talk about quantum
patch algebra).

Instead of GitHub, you can also have a look at BitBucket. If you
want to “host your own cloud”, take a look at GitLab. Actually,
GitLab might be the best for mathematicians.

Section 3: Getting Your Collaborator to use Git

How to get others to use (D)VCS?

Explain it to them in simple terms.
Then walk them through these slides.

If this doesn’t work, you can still use Git while they use
something inferior.

Explain Git with a Picture

Person A Person B

cloud
GitHub backups

Git

Git Git

local
folder

local
folder

Use Git while your Colleage is on Dropbox

Person A Person B

cloud backups

Git

local
folder

local
folder

Dropbox

copy of
remote
folder

Git

Section 4: The Mathematics of Git

Let’s have a look at the structures behind Git.

Not so much mathematics, actually...

Datastructures of Git: the index

There is the folder of files your Git repository resides in,
which has some state (i.e. files with certain content in it).
There is the index of changes from the folder with respect to
the last commit which were staged for the next commit.
There is the HEAD which points to the last commit.

Directly after performing git init or git clone or git push
successfully, your folder will contain no unstaged changes, and
the index will be empty, that is there are also no staged changes.
If you have unstaged changes in your folder, after performing
git add or with one of the commands git mv or git rm, you
will have staged changes, i.e. a changed index.
With git commit you can commit the index.

Datastructures of Git: repositories

In your local folder, you have a single Git repository, short: repo.
In it you can have many branches, one usually called master.
If you use a cloud provider like GitHub, there is also a remote
repo, often called origin.

Datastructures of Git: under the hood

Under the hood, which in Git is called plumbing, in contrast to
the porcelain user interface, Git is a content-addressable
filesystem, i.e. a key-value store.
Everything is addressed by its hash. There are (typed) blob
objects which are the leaves of tree objects. There are commit
objects which contain certain trees, reference objects which
point to commits (and behaves like branches) and tag objects
which are like a reference with metadata. Finally, there are
remote references, which point to the last commit on a remote
repository.

Git as a Graph

Essentially, Git is a graph with commits as nodes and the Git
commands are graph manipulation tools (create/remove nodes).
Creating a branch, that is, creating a reference makes a commit
reachable/adressable.
Creating a branch is like making an explicit savegame before
you do something potentially damaging with new commits.

A Few Words on Hashes

Internally, everything in Git is adressed by hashes. They look like
cf23df2207d99a74fbe169e3eba035e633b65d94
(in the case of SHA-1, used by Git).

If you’re coming from other systems, you might expect version
numbers. In Git, you have to add version numbers as extra
structure, with tags.

Since Git is a graph and version numbers impose a linear order,
this makes sense.

Git as a HIT

See Slides from Dan Licata
dlicata.web.wesleyan.edu/pubs/l13git/git.pdf

Patches can be formalized as quotient types in “ordinary”
dependent type theory, since two patches created differently
might be equal in effect (this has practical consequences)!

If one formalizes entire repositories as higher inductive types
(HITs) in homotopy type theory, one has to use fewer axioms (4
instead of 14) and patches fall out naturally.

http://dlicata.web.wesleyan.edu/pubs/l13git/git.pdf
http://dlicata.web.wesleyan.edu/pubs/l13git/git.pdf

Section 5: A Micro-Tutorial on Git

As a starter, here is a micro-tutorial on using Git

This serves the purpose of showing you the average complexity
of dealing with Git, while not being a full tutorial.

Find out what these commands do to the graph:
www.wei-wang.com/ExplainGitWithD3/

See also: Git for Scientists: A Tutorial (by John McDonnell)
nyuccl.org/pages/gittutorial/

http://www.wei-wang.com/ExplainGitWithD3/
http://www.wei-wang.com/ExplainGitWithD3/
http://nyuccl.org/pages/gittutorial/
http://nyuccl.org/pages/gittutorial/

The Most Important Commands

Try these at home:

git help $command what are the 1001 options?
git status what’s going on in this folder?
git clone $remoterepo download remote repo!
git init create a fresh & empty repo here!
git add $filenames add toindex (= stage files).
git diff what has changed?
git commit commit the index.
git commit -a -a = add all changed files first.
git pull fetch changes from remote repo.
git push push (commited) changes to remote repo.

Configuration

Once you use Git, you will want to configure it:

git config –global user.name ’Firstname Lastname’
git config –global user.email ’firstname.lastname@sth’
git config –global color.ui ’auto’
git config –global credential.helper cache
git config –global credential.helper ’cache –timeout=7200’

There are more credential-helpers that help you save time
entering your credentials (username, password for remote
repositories).

A micro-workflow

To begin with, you could do the following:

1 Create a new empty folder somewhere
2 Open a terminal in this folder
3 Run git init

4 Create a new file (some tex document)
5 Run git add $filename

6 Run git commit

7 Enter the commit message (describing the content)
8 Change the file (with your usual text editor)
9 Run git commit -a

10 Enter the commit message (a description of the changes)

That works fine when you are alone.

A workflow for collaboration with GitHub

If want to start a collaborative project, try this:

1 Create a new (possibly private) project on GitHub
2 Run git clone $repourl where you want to have the files
3 Change some file (with your usual text editor)
4 Take another look at what you did with git diff

5 Run git commit -a

6 Enter the commit message (a description of the changes)
7 Run git pull to make sure you have the latest changes
8 Eventually merge them with your changes
9 Run git push

10 Read the help section on GitHub again ;-)

The Actual Merge Process

Remember, merging real conflicts is always work.
We just try really hard to avoid conflicts.

To actually merge, it is highly recommended to use some
mergetool like meld, for example.
Emacs also has good support for merging and Git, the right
search keywords are magit and ediff.

Please expect to invest some time before the tools feel helpful.
You can still do your first merges “by hand”.

Good luck!

Here are some mantras to take home:
1 Version control takes care of your backup organization
2 The cloud makes your backups reliable and accessible
3 Distributed version control allows for small commits
4 So we can avoid large merges, which are always painful

Hopefully that’s enough to get you interested in DVCS!

Recommended reading: Got 15 minutes and want to learn Git?
try.github.io/levels/1/challenges/1

https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1

	Introduction
	Working Alone
	Working With Others
	Getting Your Collaborator to use Git
	The Mathematics of Git
	Micro Git Tutorial

