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Overview

1. I will introduce the philosophy of stable homotopy theory,
define a category of spectra, define homology and cohomology
with coefficients in a spectrum. Here we’ll pay some attention
to the difference between spectra and Ω-spectra.

2. We define a cobordism spectrum (= a Thom spectrum) for
unoriented real vector bundles MO. There it’s important to
know how Thom spaces behave under adding a trivial bundle.

3. I will review the proof of the theorem Ωn
∼−→ πnMO.

4. We introduce the notion of singular manifolds inside another
manifold and bordism of singular manifolds, which yields the
group Ωn(N) of singular manifolds in N, up to bordism in N.

5. I will prove that Ωn(N)
∼−→ Hn(N,MO) - the cohomology of N

with coefficients in the cobordism spectrum.



Overview
If time is left...

If there is some time left, I can explain how this generalizes to
singular manifolds with X-structure, which gives a much more
powerful theorem that applies to framed, oriented, complex, spin,
string, whatever bordism classes as well. There are two things to do
before one can generalize the proof: First, Ωn(N) is juiced up to
ΩX

n (N); second, MO is juiced up to MX . The proof then is
essentially a technical issue of using convenient notation.



Stable Homotopy Theory
Philosophy

Given a map f : X → Y one can look at the suspensions
Σk f : ΣkX → ΣkY . If the map f was nullhomotopic, the Σk f are
nullhomotopic, too. However, for Σk f being nullhomotopic, f
needn’t be nullhomotopic. The object Σ∞f : Σ∞X → Σ∞Y thus
carries different (strictly less) information than the object f . For
two finite CW complexes X ,Y the set of homotopy classes
[ΣkXΣkY ] eventually coincides with [Σk+1X ,Σk+1Y ]. This
process is called stabilization. One can observe that homotopy
groups of a space depend on the unstable information, i.e.
πn(X ) = [Sn,X ] 6= [ΣkSn,ΣkX ] in general. On the other hand,
(co)homology depends only on the stable information, i.e.
Hn(X ;Z) = Hn+k(ΣkX ;Z). Therefore, it can be helpful to work in
a category where only the stable information matters, to get some
knowledge about (co)homology of a space.



Stable Homotopy Theory
First Definitions

Definition
I A spectrum E is a sequence of spaces En together with

continuous maps ΣEn → En+1.
I An Ω-spectrum is a spectrum E where ΣEn → En+1

corresponds to a weak homotopy equivalence En
∼−→ ΩEn+1

under the adjunction of Σ with Ω.
I Given a space X we define its suspension spectrum Σ∞X to

be the sequence ΣnX together with the identity maps
ΣΣnX → Σn+1X .

I To each spectrum E we associate its fibrant replacement
which consists of the spaces limk→∞ΩkEn+k together with
the obvious maps.



Stable Homotopy Theory
(Co)homology with Coefficients in a Spectrum

Proposition
The fibrant replacement of any spectrum is an Ω-spectrum.

Proposition
For any Ω-spectrum E one can define (co)homology theories

Hn(X ;E) := [Sn ∧ X ,E0]

Hn(X ;E) := [Sn,X ∧ E0]

that satisfy the Eilenberg-Steenrod axioms.

Theorem (Brown representability)
Every generalized Eilenberg-Steenrod (co)homology theory comes
from an Ω-spectrum (= is representable in the category of spectra).



Stable Homotopy Theory
Homotopy Groups of a Spectrum

Definition
Given a spectrum E, the n-th homotopy group of E is defined to be
the n-th homotopy group of the 0-th space of the fibrant
replacement, i.e.

πn(E) = [Sn, lim
k→∞

ΩkEk ] = [Sn+k ,Ek ] = πn+k(Ek) for k � 0

Remark
The homology and cohomology of a point, with coefficients in (the
fibrant replacement of) E, are the same as the homotopy groups of
E.



The Thom Spectrum
(for unoriented real vector bundles) – I

The inclusion Rn ↪→ Rn ⊕ R1 yields an inclusion O(n) ↪→ O(n + 1)
(by acting trivial on the extra R1 factor). This yields a map of
classifying spaces BO(n)→ BO(n + 1) which can be concretely
seen in the model BO(n) = Gr(n,∞) of the Grassmannian of
n-planes in R∞ as the map gn : Gr(n,∞)→ Gr(n + 1,∞) that
maps a subspace V ⊂ RN to the subspace V ⊕ R1 ⊂ RN ⊕ R1.
Denote by γn : R∞ → Gr(n,∞) the tautological (universal)
O(n)-bundle. The map gn induces a bundle map gn : g∗nγ

n+1 → γn.

Proposition
g∗nγ

n+1 ' γn ⊕ ε1.



The Thom Spectrum
(for unoriented real vector bundles) – II

Proposition
Th(g∗nγ

n+1) ' Th(γn ⊕ ε1) ' ΣTh(γn).

Proposition
The maps gn induce continuous maps of Thom spaces

Th(gn) : Th(g∗nγ
n+1)→ Th(γn+1)

Definition
Denote MOn := Th(γn) then by MO we denote the spectrum
formed by the spaces MOn together with the maps
Th(gn) : ΣMOn → MOn+1, called Thom spectrum of O, or just
unoriented cobordism spectrum, sometimes N := MO.



Thom’s Theorem
Absolute Case (over a point)

Theorem (Thom)

Ωn
∼−→ Hn(pt;MO) = [Sn+k ,MOk ] (for k � 0).

We will generalize this statement by replacing the point pt by an
arbitrary space N, which requires us to replace the left hand side of
the isomorphism as well, by something called Ωn(N), to be defined
later.

We have already seen the proof; However, we revise the main steps
of the proof now.



Thom’s Theorem
Absolute Case – Proof Structure

a) To a manifold M associate fM := D(ν) ⊂ Sn+k → Th(γk) =
MOk , Sn+k \ D(ν)→ ∗ ⊂ MOk for an embedding M ↪→ Rn

with normal bundle ν.
b) See that the homotopy class of fM depends only on the

diffeomorphism class of M, get a map
φ : {n-manifolds}/∼ → πnMO.

c) Disjoint union is mapped to wedge sum (pinching trick).
d) Bordisms are mapped to homotopies under φ, since nullbordant

manifolds are mapped to 0; we get a group homomorphism
Φ : {compact n-manifolds}/cob → πnMO.

e) Surjectivity via the transversality trick: pick f ∈ α ∈ πnMO
such that M := f −1(BO(k)) does the job, considering
BO(k) ↪→ MOk as zero section.

f) Injectivity via the transversality trick: homotopy ht yields
h−1(BO(k)), bordism from h−1

0 (BO(k)) to h−1
1 (BO(k)).



Singular manifolds
Definitions

Let N be a fixed topological space.

Definition
I A singular n-manifold in N is a continuous map s : M → N

with M an n-manifold. It is called compact, if M is compact.
I Two singular n-manifolds s : M → N, s ′ : M ′ → N are said to

be diffeomorphic, if there exists a diffeomorphism t : M ∼−→ M ′

such that s ′ ◦ t = s.
I A bordism of compact singular n-manifolds s : M → N,

s ′ : M ′ → N is a singular (n + 1)-manifold w : W → N with
boundary ∂W = M tM ′ such that w |M = s and w |M ′ = s ′.

I We denote Ωn(N) the bordism classes of compact singular
n-manifolds in N.



The Relative Thom’s Theorem
Motivation

Some observations:
I The map N 7→ Ωn(N) is contravariant functorial, i.e. to every

continuous map n : N → N ′ we can associate a group
homomorphism Ωn(N ′)→ Ωn(N) by composing with n.

I Ωn(·) maps wedge sums to direct sums:
Ωn(

∨
Nα) =

⊕
Ωn(Nα)

I Ωn(pt) 6= 0 for all n.
Conclusion: Ωn(·) behaves a lot like an Eilenberg-Steenrod
cohomology theory, but with coefficients different from singular
cohomology.

In fact, Poincaré’s first attempt to define cohomology looked very
much like Ωn(·).



The Relative Thom’s Theorem

Theorem (Thom)

Ωn(N)
∼−→ Hn(N;MO) = [Sn+k ,N ∧MOk ] (for k � 0).

Proof:
We discuss only the deviation from the absolute case.
a) To s : M → N associate fs := fM ∧ (s ◦ p) : Sn+k → MOk ∧ N,

where p is the projection D(ν)→ M and ∗ on Sn+k \ D(ν).
b) If s : M → N, s ′ : M ′ → N are diffeomorphic via t : M → M ′,

their stable normal bundles can be represented by the same
space, hence fM = fM′ . Furthermore, t ◦ p = p′ and s = s ′ ◦ t
imply that s ◦ p = s ′ ◦ t ◦ p = s ′ ◦ p′.



The Relative Thom’s Theorem

Proof continued:

c) t 7→ ∨ with the same argument (pinching trick).
d) If w : W → N is a bordism of s : M → N with the trivial

singular manifold s ′ : ∅ → N, we have fM nullhomotopic, hence
fM ∧ (s ◦ p) is nullhomotopic as well. This establishes a group
homomorphism

Φ : Ωn(N)→ πn+k(MOk ∧ N), (s : M → N) 7→ [fs ]



The Relative Thom’s Theorem

Proof continued:

e) Surjectivity (with the transversality trick): choose a
representative f ∈ [f ] ∈ πn+k(MOk ∧ N) which is smooth and
transversal to the zero section
Gr(k ,N) ⊂ Gr(k ,∞) = BO(k) ↪→ MOk wedged with the
identity on N, then M := f −1(Gr(k ,N) ∧ N) is a smooth
manifold of codimension k in Sk+n, i.e. an n-dimensional
manifold. It has a natural map s : M → N, which is f followed
by the projection to N. One can check that this s has fs equal
to f , if one chooses the embedding M → Sn+k to represent the
stable normal bundle.

f) Injectivity is similar: If s : M → N and s ′ : M ′ → N have fs and
fs′ homotopic via homotopy h : Sn+k × I → MOk ∧ N, one can
choose a smooth map homotopic to h which is transversal
enough to make W := h−1(Gr(k ,N) ∧ N) a smooth
submanifold of Sn+k × I . This W is a bordism from s to s ′.



The Relative Thom’s Theorem
Consequences

Now that we know that Ω•(·) is just MO-homology, what can we
do with it?

A homology theory admits a long exact sequence for pairs A ↪→ N:

· · · → Ωn(A)→ Ωn(N)→ Ωn(N/A)→ Ωn−1(A)→ Ωn−1(N)→ · · ·

We could use homology operations to study bordism groups.
We can see if MO-cohomology also has a geometric meaning.
We can do the same for oriented bundles, then ΩSO

• ' H•(·;MSO).



X-Structures
Definitions

I Let X be a sequence of spaces Xn with maps Xn → Xn+1
(unlike a spectrum!) and fibrations
Fn : Xn → BO(n) = Gr(n,∞) that commute with
BO(n)→ BO(n + 1). The pullback F ∗n γn is called the
X -universal bundle, its Thom space MXn organises into a
spectrum MX , the Thom spectrum for X , or just X -cobordism
spectrum.

I An X -manifold is a triple (M, h, ν̃) with h : M ↪→ Rn+k an
embedding, ν : M → BOn classifying the stable normal bundle
and ν̃ : M → Xn a chosen Fn-lift of it, i.e. Fn ◦ ν̃ = ν.

I An X -map (M, h, ν̃)→ (M ′, h′, ν̃ ′) is a smooth map
g : M → M ′ such that there is a translation
T : Rn+k → Rn+k with h′ ◦ f = T ◦ h and there exists a
homotopy of ν̃ ′ ◦ f with ν̃ that lifts ν ′ ◦ f = ν.



X-Structures
Examples

Oriented bordism
For Xn = BSO(n) = G̃r(n,∞), the oriented Grassmannian, there is
a natural Xn → BO(n), which is the twofold cover
G̃r(n,∞)→ Gr(n,∞). The datum of an X -structure on a
manifold coincides with an orientation on the stable normal bundle.

Framed bordism
For Xn = pt, the one-point space, there is the map Xn → BO(n)
sending everything to the basepoint. The datum of an X -structure
on a manifold means that the map classifying the stable normal
bundle factors over the one-point space, so it is trivial. Hence,
admitting an X -structure means having a stably trivial normal
bundle, i.e. being parallelizable.



X-Structures
on singular manifolds

I A singular X -manifold in N is just a singular manifold
s : M → N with an X -structure on M.

I A map of singular X -manifolds in N is just a map of
X -manifolds that commutes with the maps to N.

I An X -bordism of singular X -manifolds M,M ′ is a singular
X -manifold of higher dimension with boundary M t−M ′, with
induced X -structures those of M resp. −M ′, where the sign
denotes orientation reversal of the embedding map
h : M ′ ↪→ Rn+k .

I We denote ΩX
n (N) the group of singular X -manifolds in N up

to X -bordism.



Thom’s Theorem for X-Structures

Theorem (Thom)

ΩX
n (N)

∼−→ Hn(N;MX )

Corollary (Pontryagin-Thom)

Ωfr
n (pt)

∼−→ Hn(pt;M(pt)) = πstab
n

Proof.
Follow the same steps as before, occasionally composing with the
map Fn induces on Thom spaces MXk → MOk . The only crucial
ingredient to remember is that Fn was a fibration, hence one can
apply lifting criteria.



Cobordism Cohomology

To study Hn(N;MX ) = [Sn+k ∧ N,MX ] one can first try to get
something geometric by applying the “surjectivity” part of the
previous construction. For simplicity, now X = BO, hence
MX = MO. Take f : Sn+k ∧ N → MOk , compose with the
projection Sn+k × N → Sn+k ∧ N, homotope to get something
transversal enough to make M := f −1(BOk) ⊂ Sn+k ×N a smooth
codimension k manifold. It comes with a map s : M → N, the
restriction of the projection to N. To get an X -structure on M, we
would repeat this process with a tubular neighbourhood of BOk . In
the end, we get an isomorphism

ΩX
n−dim N(N)

∼−→ Hn(N;MX )

which looks similar to Poincaré duality.


