The Smash Product of CW-Spectra

Konrad Voelkel

2013-06-24

Overview

Part I

You could have invented smash products!

- What do we expect, what do we want?
- Naive smash products of spectra:
$E \wedge_{a b} F$ for series a_{n}, b_{n} of natural numbers.
- Some properties of some naive smash products.

Overview

Part II

The less naive smash product.

- $E \wedge F$ is defined via a 2-dimensional telescope over all naive smash products $E \wedge_{a b} F$.
- List of all properties one usually proves about this smash product (that certain diagrams commute up to homotopy).
- Construction of a map $e q_{a b}: E \wedge_{a b} F \hookrightarrow E \wedge F$ which is reasonably often a homotopy equivalence, by embedding a 1-dimensional telescope over $E \wedge_{a b} F$ into $E \wedge F$.
- Use various naive $E \wedge_{a b} F$ and the $e q_{a b}$ to prove the properties of $E \wedge F$.

What do we expect?

Generalizing the smash product of spaces
We want the smash product of two spectra to generalize the smash product of a spectrum with a space. One way to say this: $E \wedge S^{\infty} X$ should be homotopy equivalent to $E \wedge X$. In particular, $S^{\infty} X \wedge S^{\infty} Y$ should be homotopy equivalent to $S^{\infty}(X \wedge Y)$. Another special case is that we have homotopy equivalences $1: S^{0} \wedge E \xrightarrow{\sim} E$ and $r: E \wedge S^{0} \xrightarrow{\sim} E$, which should be natural in E if we take the smash product in the sense of spectra, as well.

What do we expect?

Suspension

Smashing a spectrum with the suspension of a space means smashing with S^{1} and then with the space. Therefore, smashing a spectrum with the suspension of a spectrum should be no more different. On spectra, we can also formally desuspend (i.e. take Σ^{-1}). We expect

$$
\forall k \in \mathbb{Z}:\left(\Sigma^{k} E\right) \wedge F \simeq \Sigma^{k}(E \wedge F)
$$

What do we expect?

Natural transposition maps
For spaces, X, Y, the smash product admits a transposition map $\tau: X \wedge Y \rightarrow Y \wedge X$, which is often non-trivial. Example:
$\tau: S^{1} \wedge S^{1} \rightarrow S^{1} \wedge S^{1}$ is homotopy equivalent to $\nu \wedge$ id, with ν the inversion on S^{1}. We expect such a map and expect it to be natural and non-trivial for spectra as well.

What do we want?

Associativity up to homotopy
The smash product of spaces is associative, i.e. $X \wedge(Y \wedge Z)$ is homeomorphic to $(X \wedge Y) \wedge Z$. This is quite hard to achieve for spectra, so we relax our expectations and require a "good" smash product of spectra to be associative only up to homotopy, i.e. there is a homotopy equivalence $a: E \wedge(F \wedge G) \rightarrow(E \wedge F) \wedge G$.

What do we want?

Associativity up to homotopy
The smash product of spaces is associative, i.e. $X \wedge(Y \wedge Z)$ is homeomorphic to $(X \wedge Y) \wedge Z$. This is quite hard to achieve for spectra, so we relax our expectations and require a "good" smash product of spectra to be associative only up to homotopy, i.e. there is a homotopy equivalence $a: E \wedge(F \wedge G) \rightarrow(E \wedge F) \wedge G$.

Different ways to associate

There are various ways of re-ordering brackets:
$((e f) g) h=(e f)(g h)=e(f(g h))$ or $((e f) g) h=(e(f g)) h=e((f g) h)=e(f(g h))$. If we just have a homotopy equivalence a instead of " $=$ ", those two ways might be non-identical, so we can not just omit brackets.

What do we want?

Associativity up to homotopy
The smash product of spaces is associative, i.e. $X \wedge(Y \wedge Z)$ is homeomorphic to $(X \wedge Y) \wedge Z$. This is quite hard to achieve for spectra, so we relax our expectations and require a "good" smash product of spectra to be associative only up to homotopy, i.e. there is a homotopy equivalence $a: E \wedge(F \wedge G) \rightarrow(E \wedge F) \wedge G$.

Different ways to associate

There are various ways of re-ordering brackets:
$((e f) g) h=(e f)(g h)=e(f(g h))$ or
$((e f) g) h=(e(f g)) h=e((f g) h)=e(f(g h))$. If we just have a homotopy equivalence a instead of " $=$ ", those two ways might be non-identical, so we can not just omit brackets.

If we require the two ways of re-ordering brackets to be homotopy equivalent again, then we can omit all brackets (at least in the homotopy category).

The naive smash product(s)

Very naive

An obvious generalization
Let E be a spectrum, X a space and $S^{\infty} X$ its suspension spectrum. Then we could define $E \wedge S^{\infty} X$ by

$$
\left(E \wedge S^{\infty} X\right)_{n}:=E_{n} \wedge\left(S^{\infty} X\right)_{0}=E_{n} \wedge X
$$

and the obvious structure maps, to recover $E \wedge S^{\infty} X=E \wedge X$.

Problem

If we suspend $S^{\infty} X$ once, we get $\left(\Sigma S^{\infty} X\right)_{0}=*$, so the very naive smash product just defined gives $*$ as well, which is not the suspension of $E \wedge X$.

The naive smash product(s)

Still naive

Something you could have invented
Let E, F be two spectra. Define

$$
(E \wedge F)_{2 n}:=\left(E_{n} \wedge F_{n}\right) \text { and }(E \wedge F)_{2 n+1}:=\left(E_{n+1} \wedge F_{n}\right)
$$

Denote the structure maps of E and F by $e: \Sigma E_{n} \rightarrow E_{n+1}$ and $f: \Sigma F_{n} \rightarrow F_{n+1}$, then we define $\Sigma(E \wedge F)_{n} \rightarrow(E \wedge F)_{n+1}$ by

$$
S^{1} \wedge E_{n} \wedge F_{n} \xrightarrow{e \wedge 1} E_{n+1} \wedge F_{n}
$$

for even n; for odd n we define it by

$$
S^{1} \wedge E_{n} \wedge F_{n} \xrightarrow{\tau \wedge 1} E_{n} \wedge S^{1} \wedge F_{n} \xrightarrow{1 \wedge f} E_{n} \wedge F_{n+1}
$$

This defines a spectrum!

The naive smash product(s)

A whole series of constructions

The general naive smash product
Let $a_{n}, b_{n}: \mathbb{N} \rightarrow \mathbb{N}$ be two monotone increasing sequences $\left(a_{n+1} \geq a_{n}\right)$ of nonnegative integers with the extra property

$$
\forall n: a_{n}+b_{n}=n .
$$

Using this, we define a smash product of two spectra E and F

$$
\left(E \wedge_{a b} F\right)_{n}:=E_{a_{n}} \wedge F_{b_{n}}
$$

with structure maps similar to the previous example.

Examples

With $a_{n}=\lceil n / 2\rceil$ and $b_{n}=\lfloor n / 2\rfloor$ we get back the previous special case. With $a_{n}=n$ and $b_{n}=0$ we get back the very naive smash product.

The naive smash product(s)

If you look in the book...

Switzer's notation

Switzer denotes $E \wedge_{a b} F$ by $E \wedge_{A B} F$, where $A \sqcup B=\mathbb{N}$ is a partition of the nonnegative integers.
To get a_{n}, b_{n} from these, Switzer defines $a_{n}:=|\{a \in A \mid a<n\}|$. To get $A \sqcup B$ from a_{n}, b_{n}, we define $A:=\left\{n \in \mathbb{N} \mid a_{n+1} \neq a_{n}\right\}$. There are reasons for using Switzer's notation, in particular if we want to do something like $A \sqcup B=C$ with C order isomorphic to \mathbb{N} and then $C \sqcup D=\mathbb{N}$. This is useful for considering triple smash products, but not necessary.

Functoriality

Functions

Given functions of spectra $\phi: E \rightarrow G, \psi: F \rightarrow H$, we can form

$$
\phi \wedge_{a b} \psi: E \wedge_{a b} F \rightarrow G \wedge_{a b} H
$$

by defining it on $\left(E \wedge_{a b} F\right)_{n}=E_{a_{n}} \wedge F_{b_{n}}$ to be $\phi_{a_{n}} \wedge \psi_{b_{n}}$. This commutes with the structure maps for $E \wedge_{a b} F$, since these are either $e \wedge 1$ or $1 \wedge f$.

Functoriality

Morphisms
Given morphisms of spectra $\Phi: E \rightarrow G, \Psi: F \rightarrow H$ represented by functions on cofinal subspectra $\phi: E^{\prime} \rightarrow G, \psi: F^{\prime} \rightarrow H$, we can certainly form $\phi \wedge_{a b} \psi: E^{\prime} \wedge_{a b} F^{\prime} \rightarrow G \wedge_{a b} H$.

Functoriality

Morphisms

Given morphisms of spectra $\Phi: E \rightarrow G, \Psi: F \rightarrow H$ represented by functions on cofinal subspectra $\phi: E^{\prime} \rightarrow G, \psi: F^{\prime} \rightarrow H$, we can certainly form $\phi \wedge_{a b} \psi: E^{\prime} \wedge_{a b} F^{\prime} \rightarrow G \wedge_{a b} H$.

Problem
In general $E^{\prime} \wedge_{a b} F^{\prime}$ is not cofinal in $E \wedge_{a b} F$.

Functoriality

Morphisms

Given morphisms of spectra $\Phi: E \rightarrow G, \Psi: F \rightarrow H$ represented by functions on cofinal subspectra $\phi: E^{\prime} \rightarrow G, \psi: F^{\prime} \rightarrow H$, we can certainly form $\phi \wedge_{a b} \psi: E^{\prime} \wedge_{a b} F^{\prime} \rightarrow G \wedge_{a b} H$.

Problem

In general $E^{\prime} \wedge_{a b} F^{\prime}$ is not cofinal in $E \wedge_{a b} F$.
Solution
Consider only sequences $a_{n} \xrightarrow{n \rightarrow \infty} \infty$, then $E^{\prime} \wedge_{a b} F$ is cofinal in $E \wedge_{a b} F$.

Functoriality

On the homotopy category
For E, F spectra, X a space and $a_{n}, b_{n} \rightarrow \infty$, we have

$$
E \wedge_{a b}(F \wedge X) \simeq\left(E \wedge_{a b} F\right) \wedge X \simeq(E \wedge X) \wedge_{a b} F
$$

In particular, this holds for $X=I^{+}$, so the homotopy class of a morphism $\Phi \wedge_{a b} \Psi$ depends only on the homotopy classes of Φ and Ψ.
Therefore, $E \wedge_{a b} F$ is also a functor on the homotopy category of spectra.

Properties of certain naive smash products

Left and right units

To get homotopy equivalences $I: S^{0} \wedge_{a b} E \rightarrow E$, we can consider $a_{n}:=0$ and $b_{n}:=n$ for the left unit, then $\left(S^{0} \wedge_{a b} E\right)_{n}=S^{0} \wedge E_{n}$ and we already have a homotopy equivalence $I: S^{0} \wedge X \rightarrow X,(s, x) \mapsto x$ for any space X. These homotopy equivalences $I_{n}: S^{0} \wedge E_{n} \rightarrow E_{n}$ commute with the structure map, since the structure map on $S^{0} \wedge_{a b} E$ was defined as $1 \wedge e$. To get homotopy equivalences $r: E \wedge_{a b} S^{0} \rightarrow E$, we do the same with a and b in reversed roles.

Properties of certain naive smash products

Associativity

Let a_{n}, b_{n}, c_{n} be diverging sequences of nonnegative integers with $a_{n}+b_{n}+c_{n}=n$.
Choose subsequences a^{\prime}, b^{\prime} of a, b such that $a_{a_{n}+b_{n}}^{\prime}=a_{n}$ and $b_{a_{n}+b_{n}}^{\prime}=b_{n}$. (Let k_{n}^{\prime} be a monotone increasing sequence such that $a_{k_{n}^{\prime}}+b_{k_{n}^{\prime}}=n$ and denote $a_{n}^{\prime}:=a_{k_{n}^{\prime}}, b_{n}^{\prime}:=b_{k_{n}^{\prime}}$. Notice that $\left.a_{a_{n}+b_{n}}^{\prime}+b_{a_{n}+b_{n}}^{\prime}=a_{n}+b_{n}\right)$.
Similarly, we get for b and c the sequences $b^{\prime \prime}$ and $c^{\prime \prime}$.
With this notational setup, we have

$$
\begin{aligned}
& \left(\left(E \wedge_{a^{\prime} b^{\prime}} F\right) \wedge_{a+b, c} G\right)_{n}=\left(E \wedge_{a^{\prime} b^{\prime}} F\right)_{a_{n}+b_{n}} \wedge G_{c_{n}}=\left(E_{a_{n}} \wedge F_{b_{n}}\right) \wedge G_{c_{n}} \\
& \left(E \wedge_{a, b+c}\left(F \wedge_{b^{\prime \prime} c^{\prime \prime}} G\right)\right)_{n}=E_{a_{n}} \wedge\left(F \wedge_{b^{\prime \prime} c^{\prime \prime}} G\right)_{b_{n}+c_{n}}=E_{a_{n}} \wedge\left(F_{b_{n}} \wedge G_{c_{n}}\right)
\end{aligned}
$$

and there is a homeomorphism from the first to the second triple smash product of spaces, which we call a.
Since a is natural, this gives a morphism of spectra.

Properties of certain naive smash products

Associativity and Units

One would expect the following diagram to commute:

$$
\left(S^{0} \wedge E\right) \wedge F \longrightarrow S^{0} \wedge(E \wedge F)
$$

but in our construction of I we have used sequences which don't go to infinity, while our construction of a required sequences which do go to infinity.
This is a problem the naive smash product won't solve!

Properties of certain naive smash products

Cofibre sequences

Given a cofibre sequence $E \rightarrow F \rightarrow G$ of spectra, and a spectrum H, we can form $E \wedge_{a b} H \rightarrow F \wedge_{a b} H \rightarrow G \wedge_{a b} H$ and this is again a cofibre sequence.
We can easily prove this for a special cofibre sequence $E \xrightarrow{\Phi} F \rightarrow F \cup_{\Phi} C E$ by showing that

$$
\left(F \cup_{\Phi} C E\right) \wedge_{a b} H=\left(F \wedge_{a b} H\right) \cup_{(\Phi \wedge 1)} C\left(E \wedge_{a b} H\right),
$$

which is clear in each degree n, as long as we use sequences $a, b \rightarrow \infty$.

Overview

Part II

The less naive smash product.

- $E \wedge F$ is defined via a 2-dimensional telescope over all naive smash products $E \wedge_{a b} F$.
- List of all properties one usually proves about this smash product (that certain diagrams commute up to homotopy).
- Construction of a map $e q_{a b}: E \wedge_{a b} F \hookrightarrow E \wedge F$ which is reasonably often a homotopy equivalence, by embedding a 1-dimensional telescope over $E \wedge_{a b} F$ into $E \wedge F$.
- Use various naive $E \wedge_{a b} F$ and the $e q_{a b}$ to prove the properties of $E \wedge F$.

The less naive smash product

First, a reminder on telescopes
We shall later on need the 1-dimensional telescope over a spectrum E. For this, we have a "base" space $\mathbb{R}_{\geq 0}$ which we think of as union of intervals $[i, i+1]$ for $i \in \mathbb{Z}_{\geq 0}$. For the construction of $T(E)_{n}$ we use only the union of all intervals with left corner $i \leq n$. To construct $T(E)_{n}$, over an interval $[i, i+1]$ we take $S^{n-i} \wedge E_{i}$ and identify over a point $\{i+1\}$ with $i \in \mathbb{Z}_{\geq 0}$ the space $S^{n-i} \wedge E_{i}=S^{n-i-1} \wedge S^{1} \wedge E_{i}$ with the subspace of $S^{n-(i+1)} \wedge E_{i+1}$ via $1 \wedge e$, where $e: S^{1} \wedge E_{i} \rightarrow E_{i+1}$ is the structure map of E. Formally, this is
$T(E)_{n}:=\left(\left(\bigvee_{i=0}^{n} S^{n-i} \wedge E_{i} \wedge\{i\}^{+}\right) \vee\left(\bigvee_{i=0}^{n-1} S^{n-i} \wedge E_{i} \wedge[i, i+1]^{+}\right)\right) / \sim$

The less naive smash product

The base space for a 2-dimensional telescope
We give the half-open square $Q:=\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ the structure of a CW complex, with 0 -cells the points $(i, j) \in Q$ with $i, j \in \mathbb{Z}_{\geq 0}$, the 1-cells the intervals $[i, i+1] \times\{j\} \subset Q$ and the intervals $\{i\} \times[j, j+1]$ with $i, j \in \mathbb{Z}_{\geq 0}$, and 2-cells the closed squares $[i, i+1] \times[j, j+1] \subset Q$ with $i, j \in \mathbb{Z}_{\geq 0}$.

The less naive smash product

The base space for a 2-dimensional telescope
We give the half-open square $Q:=\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ the structure of a CW complex, with 0 -cells the points $(i, j) \in Q$ with $i, j \in \mathbb{Z}_{\geq 0}$, the 1 -cells the intervals $[i, i+1] \times\{j\} \subset Q$ and the intervals $\{i\} \times[j, j+1]$ with $i, j \in \mathbb{Z}_{\geq 0}$, and 2-cells the closed squares $[i, i+1] \times[j, j+1] \subset Q$ with $i, j \in \mathbb{Z}_{\geq 0}$.
A filtration on Q by subcomplexes
Let Q_{n} be the subcomplex of Q which consists only of the cells e with lower left corner (i, j) such that $i+j-\operatorname{dim}(e) \leq n$. Then Q_{n} looks like a stair:

The less naive smash product

Construction of $(E \wedge F)_{n}$ over the 0 - and 1-cells
For $(E \wedge F)_{n}$ we take over the 0-cells of Q_{n} the spaces $S^{n-i-j} \wedge E_{i} \wedge F_{i} \wedge\{(i, j)\}^{+}$.
Over the 1-cells of Q_{n} we take

$$
\begin{aligned}
& S^{n-i-j} \wedge E_{i} \wedge F_{i} \wedge(\{i\} \times[j, j+1])^{+} \text {and } \\
& S^{n-i-j} \wedge E_{i} \wedge F_{i} \wedge([i, i+1] \times\{j\})^{+},
\end{aligned}
$$

where we have to make the obvious identifications of the part over the 0 -cells with the "edge" over the part over the 1-cells, via the structure maps of the spectra E and F.

The less naive smash product

Construction of $(E \wedge F)_{n}$ over the 2-cells

What we need to do
We have to define something over a 2 -cell $e=[i, i+1] \times[j, j+1]$ which is consistent with our previous definition on the boundary ∂e. Observe that ∂e consists of two paths from (i, j) to $(i+1, j+1)$, and our identifications made for 1 -cells correspond to two maps (going first up then right and going first right then up)

$$
S^{n-i-j} \wedge E_{i} \wedge F_{j} \rightarrow S^{n-(i+1)-(j+1)} \wedge E_{i+1} \wedge F_{j+1},
$$

which don't coincide.
If we want to "fill in" something over e, it should have the same monodromy as our construction over ∂e.

The less naive smash product

Construction of $(E \wedge F)_{n}$ over the 2-cells

The monodromy of the construction over 1-cells Let $\left(s, t_{1}, t_{2}, x, y\right) \in S^{n-i-j-2} \wedge S^{1} \wedge S^{1} \wedge E_{i} \wedge F_{j}$, then we get via going first up then right:

$$
\mapsto\left(s, t_{1}, x, t_{2}, y\right) \mapsto\left(s, t_{1}, x, f\left(t_{2}, y\right)\right) \mapsto\left(s, e\left(t_{1}, x\right), f\left(t_{2}, y\right)\right)
$$

and from going first right then up:

$$
\mapsto\left(s, t_{1}, e\left(t_{2}, x\right), y\right) \mapsto\left(s, e\left(t_{2}, x\right), t_{1}, y\right) \mapsto\left(s, e\left(t_{2}, x\right), f\left(t_{1}, y\right)\right),
$$

so the difference between the two is precisely a precomposition with an appropriate switch map $1 \wedge \tau \wedge 1 \wedge 1$.

The less naive smash product

Construction of $(E \wedge F)_{n}$ over the 2-cells

A bundle-theoretic description
Let ξ be the vector bundle on $S^{1} \wedge S^{1}$ with transition map the switch map $\tau: S^{1} \wedge S^{1} \rightarrow S^{1} \wedge S^{1}$. Then our construction of $(E \wedge F)_{n}$ over ∂e is isomorphic to $S^{n-i-j-2} \wedge M(\xi) \wedge E_{i} \wedge F_{j}$, with $M(\xi)$ the Thom space of ξ.

Extending to the 2-cells
Because of $\pi_{1}(B S O(2))=\pi_{0}(S O(2))=*$, we can deform the classifying map of ξ to a constant map $S^{1} \rightarrow B S O(2)$, which obviously extends to D^{1}, thus gives rise to a bundle on e which extends ξ.
We can thus define $S^{n-i-j-2} \wedge M(\xi) \wedge E_{i} \wedge F_{j}$ over the 2-cell e, and then make obvious identifications with the 1 -cells and 0 -cells we already have.

The less naive smash product

Structure maps
The maps $\Sigma(E \wedge F)_{n} \rightarrow(E \wedge F)_{n+1}$ are given for each 0-cell (i, j) by the identity

$$
S^{1} \wedge\left(S^{n-i-j} \wedge E_{i} \wedge F_{j}\right) \rightarrow S^{n+1-i-j} \wedge E_{i} \wedge F_{j}
$$

We have already built in the structure maps of E and F in our identifications that make up $(E \wedge F)_{n}$.

Properties

Theorem
$E \wedge F$ is functorial in E and F and there are homotopy equivalences

$$
\begin{array}{lc}
a= & a_{E, F, G}:(E \wedge F) \wedge G \rightarrow E \wedge(F \wedge G) \\
\tau= & \tau_{E, F}: E \wedge F \rightarrow F \wedge E \\
I= & I_{E}: S^{0} \wedge E \rightarrow E \\
r= & r_{E}: E \wedge S^{0} \rightarrow E \\
\sigma= & \sigma_{E, F}:(\Sigma E) \wedge F \rightarrow \Sigma(E \wedge F)
\end{array}
$$

which are natural in the homotopy category, such that the following 8 diagrams commute up to homotopy.

Diagrams I

i) (associativity)

ii) (transposition)

Diagrams II

iii) (associativity and transposition)

Diagrams III

iv) (associativity and units)

v) (associativity and units)

Diagrams IV

vi) (associativity and units)

vii) (associativity and units)

Diagrams V

Why these eight diagrams?

Theorem (Mac Lane)
If you write down a smash product of some spectra (with parentheses!) and two ways of re-grouping brackets, transposing, applying units and suspension that reach the same conclusion, and these two ways are homotopy equivalent then there is a proof of this homotopy equivalence that uses just these 8 diagrams we've just seen.

Why these eight diagrams?

Theorem (Mac Lane)
If you write down a smash product of some spectra (with parentheses!) and two ways of re-grouping brackets, transposing, applying units and suspension that reach the same conclusion, and these two ways are homotopy equivalent then there is a proof of this homotopy equivalence that uses just these 8 diagrams we've just seen.

Proof.
Basically, you connect each expression in spectra to a canonical form and each "path" between two expressions to a canonical path. These are formed by the 8 diagrams.

Properties

Furthermore

- If X is a space with suspension spectrum $S^{\infty} X$ and E any spectrum, then $E \wedge S^{\infty} X \simeq E \wedge X$.
- If $E \rightarrow F \rightarrow G$ is a cofibre sequence and H any spectrum, then $E \wedge H \rightarrow F \wedge H \rightarrow G \wedge H$ is a cofibre sequence.
- For spectra $E_{i}, i \in I$, we have a natural homotopy equivalence $\left(\bigvee_{i} E_{i}\right) \wedge F \rightarrow \bigvee_{i}\left(E_{i} \wedge F\right)$.

Relating the naive and the less naive

Proposition
There is a homotopy equivalence $\rho: T\left(E \wedge_{a b} F\right) \rightarrow E \wedge_{a b} F$.

Relating the naive and the less naive

Proposition

There is a homotopy equivalence $\rho: T\left(E \wedge_{a b} F\right) \rightarrow E \wedge_{a b} F$.
Proof.
Remember, for a spectrum E we defined

$$
T(E)_{n}=\left(\left(\bigvee_{i=0}^{n} S^{n-i} \wedge E_{i} \wedge\{i\}^{+}\right) \vee\left(\bigvee_{i=0}^{n-1} S^{n-i} \wedge E_{i} \wedge[i, i+1]^{+}\right)\right) /
$$

so we can map $T(E)_{n} \rightarrow E_{n}$ by mapping each wedge factor $S^{n-i} \wedge E_{i} \rightarrow E_{i}+n-i$ via the $(n-i)$-fold structure map. This is obviously compatible with the structure maps of $T(E)_{n}$ and E_{n}. This is a homotopy equivalence, since it is a weak homotopy equivalence of CW spectra. Remark: the homotopy inverse is not easy to describe.
Now apply this to the spectrum $E \wedge_{a b} F$.

Relating the naive and the less naive

Proposition
There is an embedding $T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.

Relating the naive and the less naive

Proposition

There is an embedding $T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.

Proof.

You can think of a_{n}, b_{n} as describing a path $\omega: \mathbb{R}_{\geq 0} \rightarrow Q$ that is piecewise linear:

$$
\text { for } t \in[n, n+1]: \omega(t):= \begin{cases}\left(a_{n}+t-n, b_{n}\right) & \text { if }\left(a_{n+1} \neq a_{n}\right) \\ \left(a_{n}, b_{n}+t-n\right) & \text { if }\left(b_{n+1} \neq b_{n}\right)\end{cases}
$$

This path lands in (a filtered subcomplex of) the 1-skeleton of Q. We can therefore map $(s, e, f, t) \in S^{n-k} \wedge E_{a_{k}} \wedge F_{b_{k}} \wedge[k, k+1]^{+}$to $(s, e, f, \omega(t)) \in S^{n-a_{k}-b_{k}} \wedge E_{a_{k}} \wedge F_{b_{k}} \wedge \omega([k, k+1])^{+}$.

Relating the naive and the less naive

Definition

Let eq $q_{a b}: E \wedge_{a b} F \rightarrow E \wedge F$ be the composition of $\rho^{-1}: E \wedge_{a b} F \rightarrow T\left(E \wedge_{a b} F\right)$ with the embedding $T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.

Relating the naive and the less naive

Definition

Let $e q_{a b}: E \wedge_{a b} F \rightarrow E \wedge F$ be the composition of
$\rho^{-1}: E \wedge_{a b} F \rightarrow T\left(E \wedge_{a b} F\right)$ with the embedding
$T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.
Lemma
The map eq $q_{a b}$ is a homotopy equivalence if any of the following is satisfied:

Relating the naive and the less naive

Definition

Let $e q_{a b}: E \wedge_{a b} F \rightarrow E \wedge F$ be the composition of
$\rho^{-1}: E \wedge_{a b} F \rightarrow T\left(E \wedge_{a b} F\right)$ with the embedding
$T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.
Lemma
The map eq $q_{a b}$ is a homotopy equivalence if any of the following is satisfied:

1. $a_{n}, b_{n} \rightarrow \infty$,

Relating the naive and the less naive

Definition

Let $e q_{a b}: E \wedge_{a b} F \rightarrow E \wedge F$ be the composition of $\rho^{-1}: E \wedge_{a b} F \rightarrow T\left(E \wedge_{a b} F\right)$ with the embedding $T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.

Lemma
The map eq $q_{a b}$ is a homotopy equivalence if any of the following is satisfied:

1. $a_{n}, b_{n} \rightarrow \infty$,
2. $a_{n} \rightarrow d$ and $\forall r \geq d: \Sigma E_{r}=E_{r+1}$ for some $d \in \mathbb{N}$,

Relating the naive and the less naive

Definition

Let eq $q_{a b}: E \wedge_{a b} F \rightarrow E \wedge F$ be the composition of $\rho^{-1}: E \wedge_{a b} F \rightarrow T\left(E \wedge_{a b} F\right)$ with the embedding $T\left(E \wedge_{a b} F\right) \hookrightarrow E \wedge F$.

Lemma
The map eq $q_{a b}$ is a homotopy equivalence if any of the following is satisfied:

1. $a_{n}, b_{n} \rightarrow \infty$,
2. $a_{n} \rightarrow d$ and $\forall r \geq d: \Sigma E_{r}=E_{r+1}$ for some $d \in \mathbb{N}$,
3. $b_{n} \rightarrow d$ and $\forall r \geq d: \Sigma F_{r}=F_{r+1}$ for some $d \in \mathbb{N}$.

Relating the naive and the less naive

(Lemma: eq is a homotopy equivalence)

Proof.

First, we prove the case of assumption 1 :

- For $n \in \mathbb{N}$, let $G_{n} \subset(E \wedge F)_{n}$ be the subcomplex over cells $e_{i j}$ with lower left corner (i, j) such that $i \leq a_{n}$ and $j \leq b_{n}$. This gives a subspectrum $G \subset E \wedge F$. Assumption 1) shows G is cofinal.
- The inclusion $T\left(E \wedge_{a b} F\right)_{n} \rightarrow(E \wedge F)_{n}$ has image in G_{n}.
- There is a deformation retraction $G_{n} \rightarrow E_{a_{n}} \wedge F_{b_{n}}$ which is compatible with the structure maps.

Relating the naive and the less naive

(Lemma: eq is a homotopy equivalence)

Proof (cont.)

- In the diagram

the horizontal morphism must be a weak homotopy equivalence, too.
- This shows that $T\left(E \wedge_{a b} F\right) \hookrightarrow G \hookrightarrow E \wedge F$ is a homotopy equivalence.

Relating the naive and the less naive

(Lemma: eq is a homotopy equivalence)

Proof (cont.)

Now the case of assumption 2:

- We use a different subcomplex $G \subset E \wedge F$, in which we include all cells $e_{i j}$ with lower left corner (i, j) such that $j \leq b_{n}$ and $i+j \leq n$. This allows for (i, j) with $i>a_{n}$, which is necessary to get a cofinal subcomplex.
- The rest of the argument is the same.
- The proof for assumption 3 is also the same.

Proving the main theorem

General strategy

For each diagram (i-viii), pick certain sequences a_{n}, b_{n}, c_{n} such that the naive smash products satisfy the diagrams and use the previous lemma to get the property for the not-naive smash product.

Proving the main theorem

General strategy

For each diagram (i-viii), pick certain sequences a_{n}, b_{n}, c_{n} such that the naive smash products satisfy the diagrams and use the previous lemma to get the property for the not-naive smash product.

Problem

For the diagrams (iv,v,vi) we need to be able to handle sequences with $a_{n} \rightarrow d$, so we can not construct the associator map a by using only sequences $a_{n} \rightarrow \infty$.
For (vii) we need we need to handle sequences with $a_{n} \rightarrow d$, so τ has to be constructed in a way that allows this.

Proving the main theorem

General strategy

For each diagram (i-viii), pick certain sequences a_{n}, b_{n}, c_{n} such that the naive smash products satisfy the diagrams and use the previous lemma to get the property for the not-naive smash product.

Problem

For the diagrams (iv,v,vi) we need to be able to handle sequences with $a_{n} \rightarrow d$, so we can not construct the associator map a by using only sequences $a_{n} \rightarrow \infty$.
For (vii) we need we need to handle sequences with $a_{n} \rightarrow d$, so τ has to be constructed in a way that allows this.

Solution

Employ more telescopes!

Thank you for your attention!

