The Smash Product of CW-Spectra

Konrad Voelkel

2013-06-24

You could have invented smash products!

- What do we expect, what do we want?
- Naive smash products of spectra: E ∧_{ab} F for series a_n, b_n of natural numbers.
- Some properties of some naive smash products.

Overview Part II

The less naive smash product.

- E ∧ F is defined via a 2-dimensional telescope over all naive smash products E ∧_{ab} F.
- List of all properties one usually proves about this smash product (that certain diagrams commute up to homotopy).
- Construction of a map eq_{ab} : E ∧_{ab} F → E ∧ F which is reasonably often a homotopy equivalence, by embedding a 1-dimensional telescope over E ∧_{ab} F into E ∧ F.
- ► Use various naive E ∧_{ab} F and the eq_{ab} to prove the properties of E ∧ F.

Generalizing the smash product of spaces

We want the smash product of two spectra to generalize the smash product of a spectrum with a space. One way to say this: $E \wedge S^{\infty}X$ should be homotopy equivalent to $E \wedge X$. In particular, $S^{\infty}X \wedge S^{\infty}Y$ should be homotopy equivalent to $S^{\infty}(X \wedge Y)$. Another special case is that we have homotopy equivalences $I: S^0 \wedge E \xrightarrow{\sim} E$ and $r: E \wedge S^0 \xrightarrow{\sim} E$, which should be natural in E if we take the smash product in the sense of spectra, as well.

Suspension

Smashing a spectrum with the suspension of a space means smashing with S^1 and then with the space. Therefore, smashing a spectrum with the suspension of a spectrum should be no more different. On spectra, we can also formally desuspend (i.e. take Σ^{-1}). We expect

$$\forall k \in \mathbb{Z} : (\Sigma^k E) \wedge F \simeq \Sigma^k (E \wedge F).$$

Natural transposition maps

For spaces, X, Y, the smash product admits a transposition map $\tau: X \wedge Y \to Y \wedge X$, which is often non-trivial. Example: $\tau: S^1 \wedge S^1 \to S^1 \wedge S^1$ is homotopy equivalent to $\nu \wedge \text{id}$, with ν the inversion on S^1 . We expect such a map and expect it to be natural and non-trivial for spectra as well.

What do we want?

Associativity up to homotopy

The smash product of spaces is associative, i.e. $X \wedge (Y \wedge Z)$ is homeomorphic to $(X \wedge Y) \wedge Z$. This is quite hard to achieve for spectra, so we relax our expectations and require a "good" smash product of spectra to be associative only up to homotopy, i.e. there is a homotopy equivalence $a : E \wedge (F \wedge G) \rightarrow (E \wedge F) \wedge G$.

What do we want?

Associativity up to homotopy

The smash product of spaces is associative, i.e. $X \wedge (Y \wedge Z)$ is homeomorphic to $(X \wedge Y) \wedge Z$. This is quite hard to achieve for spectra, so we relax our expectations and require a "good" smash product of spectra to be associative only up to homotopy, i.e. there is a homotopy equivalence $a : E \wedge (F \wedge G) \rightarrow (E \wedge F) \wedge G$.

Different ways to associate

There are various ways of re-ordering brackets: ((ef)g)h = (ef)(gh) = e(f(gh)) or ((ef)g)h = (e(fg))h = e((fg)h) = e(f(gh)). If we just have a homotopy equivalence *a* instead of "=", those two ways might be non-identical, so we can not just omit brackets.

What do we want?

Associativity up to homotopy

The smash product of spaces is associative, i.e. $X \land (Y \land Z)$ is homeomorphic to $(X \land Y) \land Z$. This is quite hard to achieve for spectra, so we relax our expectations and require a "good" smash product of spectra to be associative only up to homotopy, i.e. there is a homotopy equivalence $a : E \land (F \land G) \rightarrow (E \land F) \land G$.

Different ways to associate

There are various ways of re-ordering brackets: ((ef)g)h = (ef)(gh) = e(f(gh)) or ((ef)g)h = (e(fg))h = e((fg)h) = e(f(gh)). If we just have a homotopy equivalence *a* instead of "=", those two ways might be non-identical, so we can not just omit brackets.

If we require the two ways of re-ordering brackets to be homotopy equivalent again, then we can omit all brackets (at least in the homotopy category).

The naive smash product(s) Very naive

An obvious generalization

Let *E* be a spectrum, *X* a space and $S^{\infty}X$ its suspension spectrum. Then we could define $E \wedge S^{\infty}X$ by

$$(E \wedge S^{\infty}X)_n := E_n \wedge (S^{\infty}X)_0 = E_n \wedge X$$

and the obvious structure maps, to recover $E \wedge S^{\infty}X = E \wedge X$.

Problem

If we suspend $S^{\infty}X$ once, we get $(\Sigma S^{\infty}X)_0 = *$, so the very naive smash product just defined gives * as well, which is not the suspension of $E \wedge X$.

The naive smash product(s) Still naive

Something you could have invented Let E, F be two spectra. Define

$$(E \wedge F)_{2n} := (E_n \wedge F_n) \text{ and } (E \wedge F)_{2n+1} := (E_{n+1} \wedge F_n).$$

Denote the structure maps of *E* and *F* by $e: \Sigma E_n \to E_{n+1}$ and $f: \Sigma F_n \to F_{n+1}$, then we define $\Sigma (E \wedge F)_n \to (E \wedge F)_{n+1}$ by

$$S^1 \wedge E_n \wedge F_n \xrightarrow{e \wedge 1} E_{n+1} \wedge F_n$$

for even n; for odd n we define it by

$$S^1 \wedge E_n \wedge F_n \xrightarrow{\tau \wedge 1} E_n \wedge S^1 \wedge F_n \xrightarrow{1 \wedge f} E_n \wedge F_{n+1}.$$

This defines a spectrum!

The naive smash product(s) A whole series of constructions

The general naive smash product

Let $a_n, b_n : \mathbb{N} \to \mathbb{N}$ be two monotone increasing sequences $(a_{n+1} \ge a_n)$ of nonnegative integers with the extra property

$$\forall n: a_n + b_n = n.$$

Using this, we define a smash product of two spectra E and F

$$(E \wedge_{ab} F)_n := E_{a_n} \wedge F_{b_n}$$

with structure maps similar to the previous example.

Examples

With $a_n = \lceil n/2 \rceil$ and $b_n = \lfloor n/2 \rfloor$ we get back the previous special case. With $a_n = n$ and $b_n = 0$ we get back the very naive smash product.

The naive smash product(s) If you look in the book...

Switzer's notation

Switzer denotes $E \wedge_{ab} F$ by $E \wedge_{AB} F$, where $A \sqcup B = \mathbb{N}$ is a partition of the nonnegative integers.

To get a_n, b_n from these, Switzer defines $a_n := |\{a \in A \mid a < n\}|$. To get $A \sqcup B$ from a_n, b_n , we define $A := \{n \in \mathbb{N} \mid a_{n+1} \neq a_n\}$. There are reasons for using Switzer's notation, in particular if we want to do something like $A \sqcup B = C$ with C order isomorphic to \mathbb{N} and then $C \sqcup D = \mathbb{N}$. This is useful for considering triple smash products, but not necessary.

Functions

Given functions of spectra $\phi: E \to G$, $\psi: F \to H$, we can form

$$\phi \wedge_{\mathsf{ab}} \psi : \mathsf{E} \wedge_{\mathsf{ab}} \mathsf{F} \to \mathsf{G} \wedge_{\mathsf{ab}} \mathsf{H}$$

by defining it on $(E \wedge_{ab} F)_n = E_{a_n} \wedge F_{b_n}$ to be $\phi_{a_n} \wedge \psi_{b_n}$. This commutes with the structure maps for $E \wedge_{ab} F$, since these are either $e \wedge 1$ or $1 \wedge f$.

Morphisms

Given morphisms of spectra $\Phi : E \to G$, $\Psi : F \to H$ represented by functions on cofinal subspectra $\phi : E' \to G$, $\psi : F' \to H$, we can certainly form $\phi \wedge_{ab} \psi : E' \wedge_{ab} F' \to G \wedge_{ab} H$.

Morphisms

Given morphisms of spectra $\Phi : E \to G$, $\Psi : F \to H$ represented by functions on cofinal subspectra $\phi : E' \to G$, $\psi : F' \to H$, we can certainly form $\phi \wedge_{ab} \psi : E' \wedge_{ab} F' \to G \wedge_{ab} H$.

Problem

In general $E' \wedge_{ab} F'$ is not cofinal in $E \wedge_{ab} F$.

Morphisms

Given morphisms of spectra $\Phi: E \to G$, $\Psi: F \to H$ represented by functions on cofinal subspectra $\phi: E' \to G$, $\psi: F' \to H$, we can certainly form $\phi \wedge_{ab} \psi: E' \wedge_{ab} F' \to G \wedge_{ab} H$.

Problem

In general $E' \wedge_{ab} F'$ is not cofinal in $E \wedge_{ab} F$.

Solution

Consider only sequences $a_n \xrightarrow{n \to \infty} \infty$, then $E' \wedge_{ab} F$ is cofinal in $E \wedge_{ab} F$.

On the homotopy category

For E, F spectra, X a space and $a_n, b_n \rightarrow \infty$, we have

$$E \wedge_{ab} (F \wedge X) \simeq (E \wedge_{ab} F) \wedge X \simeq (E \wedge X) \wedge_{ab} F.$$

In particular, this holds for $X = I^+$, so the homotopy class of a morphism $\Phi \wedge_{ab} \Psi$ depends only on the homotopy classes of Φ and Ψ .

Therefore, $E \wedge_{ab} F$ is also a functor on the homotopy category of spectra.

Left and right units

To get homotopy equivalences $I: S^0 \wedge_{ab} E \to E$, we can consider $a_n := 0$ and $b_n := n$ for the left unit, then $(S^0 \wedge_{ab} E)_n = S^0 \wedge E_n$ and we already have a homotopy equivalence $I: S^0 \wedge X \to X, (s, x) \mapsto x$ for any space X. These homotopy equivalences $l_n: S^0 \wedge E_n \to E_n$ commute with the structure map, since the structure map on $S^0 \wedge_{ab} E$ was defined as $1 \wedge e$. To get homotopy equivalences $r: E \wedge_{ab} S^0 \to E$, we do the same with a and b in reversed roles.

Associativity

Let a_n, b_n, c_n be diverging sequences of nonnegative integers with $a_n + b_n + c_n = n$. Choose subsequences a', b' of a, b such that $a'_{a_n+b_n} = a_n$ and $b'_{a_n+b_n} = b_n$. (Let k'_n be a monotone increasing sequence such that $a_{k'_n} + b_{k'_n} = n$ and denote $a'_n := a_{k'_n}, b'_n := b_{k'_n}$. Notice that $a'_{a_n+b_n} + b'_{a_n+b_n} = a_n + b_n$). Similarly, we get for b and c the sequences b'' and c''. With this notational setup, we have

$$((E \wedge_{a'b'} F) \wedge_{a+b,c} G)_n = (E \wedge_{a'b'} F)_{a_n+b_n} \wedge G_{c_n} = (E_{a_n} \wedge F_{b_n}) \wedge G_{c_n}$$

$$(E \wedge_{a,b+c} (F \wedge_{b''c''} G))_n = E_{a_n} \wedge (F \wedge_{b''c''} G)_{b_n+c_n} = E_{a_n} \wedge (F_{b_n} \wedge G_{c_n})$$

and there is a homeomorphism from the first to the second triple smash product of spaces, which we call a. Since a is natural, this gives a morphism of spectra.

Associativity and Units

One would expect the following diagram to commute:

but in our construction of I we have used sequences which don't go to infinity, while our construction of a required sequences which do go to infinity.

This is a problem the naive smash product won't solve!

Cofibre sequences

Given a cofibre sequence $E \to F \to G$ of spectra, and a spectrum H, we can form $E \wedge_{ab} H \to F \wedge_{ab} H \to G \wedge_{ab} H$ and this is again a cofibre sequence.

We can easily prove this for a special cofibre sequence $E \xrightarrow{\Phi} F \to F \cup_{\Phi} CE$ by showing that

$$(F \cup_{\Phi} CE) \wedge_{ab} H = (F \wedge_{ab} H) \cup_{(\Phi \wedge 1)} C(E \wedge_{ab} H),$$

which is clear in each degree *n*, as long as we use sequences $a, b \rightarrow \infty$.

Overview Part II

The less naive smash product.

- E ∧ F is defined via a 2-dimensional telescope over all naive smash products E ∧_{ab} F.
- List of all properties one usually proves about this smash product (that certain diagrams commute up to homotopy).
- Construction of a map eq_{ab} : E ∧_{ab} F → E ∧ F which is reasonably often a homotopy equivalence, by embedding a 1-dimensional telescope over E ∧_{ab} F into E ∧ F.
- ► Use various naive E ∧_{ab} F and the eq_{ab} to prove the properties of E ∧ F.

First, a reminder on telescopes

We shall later on need the 1-dimensional telescope over a spectrum E. For this, we have a "base" space $\mathbb{R}_{\geq 0}$ which we think of as union of intervals [i, i + 1] for $i \in \mathbb{Z}_{\geq 0}$. For the construction of $T(E)_n$ we use only the union of all intervals with left corner $i \leq n$. To construct $T(E)_n$, over an interval [i, i + 1] we take $S^{n-i} \wedge E_i$ and identify over a point $\{i + 1\}$ with $i \in \mathbb{Z}_{\geq 0}$ the space $S^{n-i} \wedge E_i = S^{n-i-1} \wedge S^1 \wedge E_i$ with the subspace of $S^{n-(i+1)} \wedge E_{i+1}$ via $1 \wedge e$, where $e : S^1 \wedge E_i \to E_{i+1}$ is the structure map of E. Formally, this is

$$T(E)_n := \left(\left(\bigvee_{i=0}^n S^{n-i} \wedge E_i \wedge \{i\}^+ \right) \vee \left(\bigvee_{i=0}^{n-1} S^{n-i} \wedge E_i \wedge [i,i+1]^+ \right) \right) / \sim$$

The base space for a 2-dimensional telescope

We give the half-open square $Q := \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ the structure of a CW complex, with 0-cells the points $(i,j) \in Q$ with $i,j \in \mathbb{Z}_{\geq 0}$, the 1-cells the intervals $[i, i+1] \times \{j\} \subset Q$ and the intervals $\{i\} \times [j, j+1]$ with $i, j \in \mathbb{Z}_{\geq 0}$, and 2-cells the closed squares $[i, i+1] \times [j, j+1] \subset Q$ with $i, j \in \mathbb{Z}_{\geq 0}$.

The base space for a 2-dimensional telescope

We give the half-open square $Q := \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ the structure of a CW complex, with 0-cells the points $(i, j) \in Q$ with $i, j \in \mathbb{Z}_{\geq 0}$, the 1-cells the intervals $[i, i + 1] \times \{j\} \subset Q$ and the intervals $\{i\} \times [j, j + 1]$ with $i, j \in \mathbb{Z}_{\geq 0}$, and 2-cells the closed squares $[i, i + 1] \times [j, j + 1] \subset Q$ with $i, j \in \mathbb{Z}_{\geq 0}$.

A filtration on Q by subcomplexes

Let Q_n be the subcomplex of Q which consists only of the cells e with lower left corner (i, j) such that $i + j - dim(e) \le n$. Then Q_n looks like a stair:

Construction of $(E \wedge F)_n$ over the 0- and 1-cells

For $(E \wedge F)_n$ we take over the 0-cells of Q_n the spaces $S^{n-i-j} \wedge E_i \wedge F_i \wedge \{(i,j)\}^+$. Over the 1-cells of Q_n we take

$$S^{n-i-j} \wedge E_i \wedge F_i \wedge (\{i\} imes [j, j+1])^+$$
 and
 $S^{n-i-j} \wedge E_i \wedge F_i \wedge ([i, i+1] imes \{j\})^+,$

where we have to make the obvious identifications of the part over the 0-cells with the "edge" over the part over the 1-cells, via the structure maps of the spectra E and F.

The less naive smash product Construction of $(E \land F)_n$ over the 2-cells

What we need to do

We have to define something over a 2-cell $e = [i, i + 1] \times [j, j + 1]$ which is consistent with our previous definition on the boundary ∂e . Observe that ∂e consists of two paths from (i, j) to (i + 1, j + 1), and our identifications made for 1-cells correspond to two maps (going first up then right and going first right then up)

$$S^{n-i-j} \wedge E_i \wedge F_j \rightarrow S^{n-(i+1)-(j+1)} \wedge E_{i+1} \wedge F_{j+1},$$

which don't coincide.

If we want to "fill in" something over e, it should have the same monodromy as our construction over ∂e .

The less naive smash product Construction of $(E \land F)_n$ over the 2-cells

> The monodromy of the construction over 1-cells Let $(s, t_1, t_2, x, y) \in S^{n-i-j-2} \wedge S^1 \wedge S^1 \wedge E_i \wedge F_j$, then we get via going first up then right:

$$\mapsto (s,t_1,x,t_2,y) \mapsto (s,t_1,x,f(t_2,y)) \mapsto (s,e(t_1,x),f(t_2,y))$$

and from going first right then up:

$$\mapsto (s,t_1,e(t_2,x),y)\mapsto (s,e(t_2,x),t_1,y)\mapsto (s,e(t_2,x),f(t_1,y)),$$

so the difference between the two is precisely a precomposition with an appropriate switch map $1 \land \tau \land 1 \land 1$.

The less naive smash product Construction of $(E \land F)_n$ over the 2-cells

A bundle-theoretic description

Let ξ be the vector bundle on $S^1 \wedge S^1$ with transition map the switch map $\tau : S^1 \wedge S^1 \rightarrow S^1 \wedge S^1$. Then our construction of $(E \wedge F)_n$ over ∂e is isomorphic to $S^{n-i-j-2} \wedge M(\xi) \wedge E_i \wedge F_j$, with $M(\xi)$ the Thom space of ξ .

Extending to the 2-cells

Because of $\pi_1(BSO(2)) = \pi_0(SO(2)) = *$, we can deform the classifying map of ξ to a constant map $S^1 \to BSO(2)$, which obviously extends to D^1 , thus gives rise to a bundle on e which extends ξ .

We can thus define $S^{n-i-j-2} \wedge M(\xi) \wedge E_i \wedge F_j$ over the 2-cell *e*, and then make obvious identifications with the 1-cells and 0-cells we already have.

Structure maps

The maps $\Sigma(E \wedge F)_n \rightarrow (E \wedge F)_{n+1}$ are given for each 0-cell (i,j) by the identity

$$S^1 \wedge (S^{n-i-j} \wedge E_i \wedge F_j) \rightarrow S^{n+1-i-j} \wedge E_i \wedge F_j.$$

We have already built in the structure maps of *E* and *F* in our identifications that make up $(E \wedge F)_n$.

Properties

Theorem

 $E \wedge F$ is functorial in E and F and there are homotopy equivalences

a =	$a_{E,F,G}:(E\wedge F)\wedge G ightarrow E\wedge (F\wedge G)$
$\tau =$	$ au_{E,F}: E \wedge F o F \wedge E$
I =	$I_E:S^0\wedge E ightarrow E$
<i>r</i> =	$r_E: E \wedge S^0 \to E$
$\sigma =$	$\sigma_{E,F}: (\Sigma E) \wedge F \rightarrow \Sigma(E \wedge F)$

which are natural in the homotopy category, such that the following 8 diagrams commute up to homotopy.

Diagrams I

Diagrams II

Diagrams III

Diagrams IV

Diagrams V

Why these eight diagrams?

Theorem (Mac Lane)

If you write down a smash product of some spectra (with parentheses!) and two ways of re-grouping brackets, transposing, applying units and suspension that reach the same conclusion, and these two ways are homotopy equivalent – then there is a proof of this homotopy equivalence that uses just these 8 diagrams we've just seen.

Why these eight diagrams?

Theorem (Mac Lane)

If you write down a smash product of some spectra (with parentheses!) and two ways of re-grouping brackets, transposing, applying units and suspension that reach the same conclusion, and these two ways are homotopy equivalent – then there is a proof of this homotopy equivalence that uses just these 8 diagrams we've just seen.

Proof.

Basically, you connect each expression in spectra to a canonical form and each "path" between two expressions to a canonical path. These are formed by the 8 diagrams. $\hfill \Box$

Properties

Furthermore

- ▶ If X is a space with suspension spectrum $S^{\infty}X$ and E any spectrum, then $E \land S^{\infty}X \simeq E \land X$.
- If $E \to F \to G$ is a cofibre sequence and H any spectrum, then $E \land H \to F \land H \to G \land H$ is a cofibre sequence.
- ► For spectra E_i , $i \in I$, we have a natural homotopy equivalence $(\bigvee_i E_i) \land F \to \bigvee_i (E_i \land F)$.

Proposition

There is a homotopy equivalence $\rho : T(E \wedge_{ab} F) \rightarrow E \wedge_{ab} F$.

Proposition

There is a homotopy equivalence $\rho : T(E \wedge_{ab} F) \rightarrow E \wedge_{ab} F$.

Proof.

Remember, for a spectrum E we defined

$$T(E)_n = \left(\left(\bigvee_{i=0}^n S^{n-i} \wedge E_i \wedge \{i\}^+ \right) \vee \left(\bigvee_{i=0}^{n-1} S^{n-i} \wedge E_i \wedge [i,i+1]^+ \right) \right) / \gamma$$

so we can map $T(E)_n \to E_n$ by mapping each wedge factor $S^{n-i} \wedge E_i \to E_i + n - i$ via the (n-i)-fold structure map. This is obviously compatible with the structure maps of $T(E)_n$ and E_n . This is a homotopy equivalence, since it is a weak homotopy equivalence of CW spectra. Remark: the homotopy inverse is not easy to describe.

Now apply this to the spectrum $E \wedge_{ab} F$.

Proposition

There is an embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Proposition

There is an embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Proof.

You can think of a_n, b_n as describing a path $\omega : \mathbb{R}_{\geq 0} \to Q$ that is piecewise linear:

for
$$t \in [n, n+1]$$
: $\omega(t) := \begin{cases} (a_n + t - n, b_n) & \text{ if } (a_{n+1} \neq a_n) \\ (a_n, b_n + t - n) & \text{ if } (b_{n+1} \neq b_n) \end{cases}$

This path lands in (a filtered subcomplex of) the 1-skeleton of Q. We can therefore map $(s, e, f, t) \in S^{n-k} \wedge E_{a_k} \wedge F_{b_k} \wedge [k, k+1]^+$ to $(s, e, f, \omega(t)) \in S^{n-a_k-b_k} \wedge E_{a_k} \wedge F_{b_k} \wedge \omega([k, k+1])^+$. \Box

Definition

Let $eq_{ab} : E \wedge_{ab} F \to E \wedge F$ be the composition of $\rho^{-1} : E \wedge_{ab} F \to T(E \wedge_{ab} F)$ with the embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Definition

Let $eq_{ab} : E \wedge_{ab} F \to E \wedge F$ be the composition of $\rho^{-1} : E \wedge_{ab} F \to T(E \wedge_{ab} F)$ with the embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Lemma

The map eq_{ab} is a homotopy equivalence if any of the following is satisfied:

Definition

Let $eq_{ab} : E \wedge_{ab} F \to E \wedge F$ be the composition of $\rho^{-1} : E \wedge_{ab} F \to T(E \wedge_{ab} F)$ with the embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Lemma

The map eq_{ab} is a homotopy equivalence if any of the following is satisfied:

1.
$$a_n, b_n \to \infty$$
,

Definition

Let $eq_{ab}: E \wedge_{ab} F \to E \wedge F$ be the composition of $\rho^{-1}: E \wedge_{ab} F \to T(E \wedge_{ab} F)$ with the embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Lemma

The map eq_{ab} is a homotopy equivalence if any of the following is satisfied:

1. $a_n, b_n \to \infty$, 2. $a_n \to d$ and $\forall r \ge d : \Sigma E_r = E_{r+1}$ for some $d \in \mathbb{N}$,

Definition

Let $eq_{ab}: E \wedge_{ab} F \to E \wedge F$ be the composition of $\rho^{-1}: E \wedge_{ab} F \to T(E \wedge_{ab} F)$ with the embedding $T(E \wedge_{ab} F) \hookrightarrow E \wedge F$.

Lemma

The map eq_{ab} is a homotopy equivalence if any of the following is satisfied:

1.
$$a_n, b_n \to \infty$$
,
2. $a_n \to d$ and $\forall r \ge d : \Sigma E_r = E_{r+1}$ for some $d \in \mathbb{N}$,
3. $b_n \to d$ and $\forall r \ge d : \Sigma F_r = F_{r+1}$ for some $d \in \mathbb{N}$.

(Lemma: *eq* is a homotopy equivalence)

Proof.

First, we prove the case of assumption 1:

- For n ∈ N, let G_n ⊂ (E ∧ F)_n be the subcomplex over cells e_{ij} with lower left corner (i, j) such that i ≤ a_n and j ≤ b_n. This gives a subspectrum G ⊂ E ∧ F. Assumption 1) shows G is cofinal.
- The inclusion $T(E \wedge_{ab} F)_n \rightarrow (E \wedge F)_n$ has image in G_n .
- ► There is a deformation retraction G_n → E_{a_n} ∧ F_{b_n} which is compatible with the structure maps.

Relating the naive and the less naive (Lemma: *eq* is a homotopy equivalence)

Proof (cont.)

► In the diagram

the horizontal morphism must be a weak homotopy equivalence, too.

• This shows that $T(E \wedge_{ab} F) \hookrightarrow G \hookrightarrow E \wedge F$ is a homotopy equivalence.

(Lemma: *eq* is a homotopy equivalence)

Proof (cont.)

Now the case of assumption 2:

- ▶ We use a different subcomplex $G \subset E \land F$, in which we include all cells e_{ij} with lower left corner (i,j) such that $j \leq b_n$ and $i+j \leq n$. This allows for (i,j) with $i > a_n$, which is necessary to get a cofinal subcomplex.
- The rest of the argument is the same.
- The proof for assumption 3 is also the same.

Proving the main theorem

General strategy

For each diagram (i–viii), pick certain sequences a_n, b_n, c_n such that the naive smash products satisfy the diagrams and use the previous lemma to get the property for the not-naive smash product.

Proving the main theorem

General strategy

For each diagram (i–viii), pick certain sequences a_n, b_n, c_n such that the naive smash products satisfy the diagrams and use the previous lemma to get the property for the not-naive smash product.

Problem

For the diagrams (iv,v,vi) we need to be able to handle sequences with $a_n \rightarrow d$, so we can not construct the associator map a by using only sequences $a_n \rightarrow \infty$.

For (vii) we need we need to handle sequences with $a_n \rightarrow d$, so τ has to be constructed in a way that allows this.

Proving the main theorem

General strategy

For each diagram (i–viii), pick certain sequences a_n, b_n, c_n such that the naive smash products satisfy the diagrams and use the previous lemma to get the property for the not-naive smash product.

Problem

For the diagrams (iv,v,vi) we need to be able to handle sequences with $a_n \rightarrow d$, so we can not construct the associator map a by using only sequences $a_n \rightarrow \infty$.

For (vii) we need we need to handle sequences with $a_n \rightarrow d$, so τ has to be constructed in a way that allows this.

Solution

Employ more telescopes!

Thank you for your attention!