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Overview
Part I

You could have invented smash products!
I What do we expect, what do we want?
I Naive smash products of spectra:

E ∧ab F for series an, bn of natural numbers.
I Some properties of some naive smash products.



Overview
Part II

The less naive smash product.
I E ∧ F is defined via a 2-dimensional telescope over all naive

smash products E ∧ab F .
I List of all properties one usually proves about this smash

product (that certain diagrams commute up to homotopy).
I Construction of a map eqab : E ∧ab F ↪→ E ∧ F which is

reasonably often a homotopy equivalence, by embedding a
1-dimensional telescope over E ∧ab F into E ∧ F .

I Use various naive E ∧ab F and the eqab to prove the properties
of E ∧ F .



What do we expect?

Generalizing the smash product of spaces
We want the smash product of two spectra to generalize the smash
product of a spectrum with a space. One way to say this: E ∧ S∞X
should be homotopy equivalent to E ∧ X . In particular,
S∞X ∧ S∞Y should be homotopy equivalent to S∞(X ∧ Y ).
Another special case is that we have homotopy equivalences
l : S0 ∧ E ∼−→ E and r : E ∧ S0 ∼−→ E , which should be natural in E
if we take the smash product in the sense of spectra, as well.



What do we expect?

Suspension
Smashing a spectrum with the suspension of a space means smashing
with S1 and then with the space. Therefore, smashing a spectrum
with the suspension of a spectrum should be no more different. On
spectra, we can also formally desuspend (i.e. take Σ−1). We expect

∀k ∈ Z : (ΣkE ) ∧ F ' Σk(E ∧ F ).



What do we expect?

Natural transposition maps
For spaces, X , Y , the smash product admits a transposition map
τ : X ∧ Y → Y ∧ X , which is often non-trivial. Example:
τ : S1 ∧ S1 → S1 ∧ S1 is homotopy equivalent to ν ∧ id, with ν the
inversion on S1. We expect such a map and expect it to be natural
and non-trivial for spectra as well.



What do we want?
Associativity up to homotopy
The smash product of spaces is associative, i.e. X ∧ (Y ∧ Z ) is
homeomorphic to (X ∧ Y ) ∧ Z . This is quite hard to achieve for
spectra, so we relax our expectations and require a “good” smash
product of spectra to be associative only up to homotopy, i.e. there
is a homotopy equivalence a : E ∧ (F ∧ G )→ (E ∧ F ) ∧ G .

Different ways to associate
There are various ways of re-ordering brackets:
((ef )g)h = (ef )(gh) = e(f (gh)) or
((ef )g)h = (e(fg))h = e((fg)h) = e(f (gh)). If we just have a
homotopy equivalence a instead of “=”, those two ways might be
non-identical, so we can not just omit brackets.

If we require the two ways of re-ordering brackets to be homotopy
equivalent again, then we can omit all brackets (at least in the
homotopy category).
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The naive smash product(s)
Very naive

An obvious generalization
Let E be a spectrum, X a space and S∞X its suspension spectrum.
Then we could define E ∧ S∞X by

(E ∧ S∞X )n := En ∧ (S∞X )0 = En ∧ X

and the obvious structure maps, to recover E ∧ S∞X = E ∧ X .

Problem
If we suspend S∞X once, we get (ΣS∞X )0 = ∗, so the very naive
smash product just defined gives ∗ as well, which is not the
suspension of E ∧ X .



The naive smash product(s)
Still naive

Something you could have invented
Let E ,F be two spectra. Define

(E ∧ F )2n := (En ∧ Fn) and (E ∧ F )2n+1 := (En+1 ∧ Fn).

Denote the structure maps of E and F by e : ΣEn → En+1 and
f : ΣFn → Fn+1, then we define Σ(E ∧ F )n → (E ∧ F )n+1 by

S1 ∧ En ∧ Fn
e∧1−−→ En+1 ∧ Fn

for even n; for odd n we define it by

S1 ∧ En ∧ Fn
τ∧1−−→ En ∧ S1 ∧ Fn

1∧f−−→ En ∧ Fn+1.

This defines a spectrum!



The naive smash product(s)
A whole series of constructions

The general naive smash product
Let an, bn : N→ N be two monotone increasing sequences
(an+1 ≥ an) of nonnegative integers with the extra property

∀n : an + bn = n.

Using this, we define a smash product of two spectra E and F

(E ∧ab F )n := Ean ∧ Fbn

with structure maps similar to the previous example.

Examples
With an = dn/2e and bn = bn/2c we get back the previous special
case. With an = n and bn = 0 we get back the very naive smash
product.



The naive smash product(s)
If you look in the book...

Switzer’s notation
Switzer denotes E ∧ab F by E ∧AB F , where A t B = N is a
partition of the nonnegative integers.
To get an, bn from these, Switzer defines an := |{a ∈ A | a < n}|.
To get A t B from an, bn, we define A := {n ∈ N | an+1 6= an}.
There are reasons for using Switzer’s notation, in particular if we
want to do something like A t B = C with C order isomorphic to N
and then C t D = N. This is useful for considering triple smash
products, but not necessary.



Functoriality

Functions
Given functions of spectra φ : E → G , ψ : F → H, we can form

φ ∧ab ψ : E ∧ab F → G ∧ab H

by defining it on (E ∧ab F )n = Ean ∧ Fbn to be φan ∧ ψbn . This
commutes with the structure maps for E ∧ab F , since these are
either e ∧ 1 or 1 ∧ f .



Functoriality

Morphisms
Given morphisms of spectra Φ : E → G , Ψ : F → H represented by
functions on cofinal subspectra φ : E ′ → G , ψ : F ′ → H, we can
certainly form φ ∧ab ψ : E ′ ∧ab F ′ → G ∧ab H.

Problem
In general E ′ ∧ab F ′ is not cofinal in E ∧ab F .

Solution
Consider only sequences an

n→∞−−−→∞, then E ′ ∧ab F is cofinal in
E ∧ab F .
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Functoriality

On the homotopy category
For E ,F spectra, X a space and an, bn →∞, we have

E ∧ab (F ∧ X ) ' (E ∧ab F ) ∧ X ' (E ∧ X ) ∧ab F .

In particular, this holds for X = I+, so the homotopy class of a
morphism Φ ∧ab Ψ depends only on the homotopy classes of Φ and
Ψ.
Therefore, E ∧ab F is also a functor on the homotopy category of
spectra.



Properties of certain naive smash products

Left and right units
To get homotopy equivalences l : S0 ∧ab E → E , we can consider
an := 0 and bn := n for the left unit, then (S0 ∧ab E )n = S0 ∧ En
and we already have a homotopy equivalence
l : S0 ∧ X → X , (s, x) 7→ x for any space X . These homotopy
equivalences ln : S0 ∧ En → En commute with the structure map,
since the structure map on S0 ∧ab E was defined as 1 ∧ e.
To get homotopy equivalences r : E ∧ab S0 → E , we do the same
with a and b in reversed roles.



Properties of certain naive smash products

Associativity
Let an, bn, cn be diverging sequences of nonnegative integers with
an + bn + cn = n.
Choose subsequences a′, b′ of a, b such that a′an+bn

= an and
b′an+bn

= bn. (Let k ′n be a monotone increasing sequence such that
ak ′

n
+ bk ′

n
= n and denote a′n := ak ′

n
, b′n := bk ′

n
. Notice that

a′an+bn
+ b′an+bn

= an + bn).
Similarly, we get for b and c the sequences b′′ and c ′′.
With this notational setup, we have

((E ∧a′b′ F )∧a+b,c G )n = (E ∧a′b′ F )an+bn ∧Gcn = (Ean ∧Fbn)∧Gcn

(E∧a,b+c (F∧b′′c ′′G ))n = Ean∧(F∧b′′c ′′G )bn+cn = Ean∧(Fbn∧Gcn)

and there is a homeomorphism from the first to the second triple
smash product of spaces, which we call a.
Since a is natural, this gives a morphism of spectra.



Properties of certain naive smash products

Associativity and Units
One would expect the following diagram to commute:

(S0 ∧ E ) ∧ F S0 ∧ (E ∧ F )

E ∧ F

ll ∧ 1

a

but in our construction of l we have used sequences which don’t go
to infinity, while our construction of a required sequences which do
go to infinity.
This is a problem the naive smash product won’t solve!



Properties of certain naive smash products

Cofibre sequences
Given a cofibre sequence E → F → G of spectra, and a spectrum H,
we can form E ∧ab H → F ∧ab H → G ∧ab H and this is again a
cofibre sequence.
We can easily prove this for a special cofibre sequence
E Φ−→ F → F ∪Φ CE by showing that

(F ∪Φ CE ) ∧ab H = (F ∧ab H) ∪(Φ∧1) C (E ∧ab H),

which is clear in each degree n, as long as we use sequences
a, b →∞.



Overview
Part II

The less naive smash product.
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of E ∧ F .



The less naive smash product

First, a reminder on telescopes
We shall later on need the 1-dimensional telescope over a spectrum
E . For this, we have a “base” space R≥0 which we think of as union
of intervals [i , i + 1] for i ∈ Z≥0. For the construction of T (E )n we
use only the union of all intervals with left corner i ≤ n.
To construct T (E )n, over an interval [i , i + 1] we take Sn−i ∧ Ei and
identify over a point {i + 1} with i ∈ Z≥0 the space
Sn−i ∧ Ei = Sn−i−1 ∧ S1 ∧ Ei with the subspace of Sn−(i+1) ∧ Ei+1
via 1 ∧ e, where e : S1 ∧ Ei → Ei+1 is the structure map of E .
Formally, this is

T (E )n :=

((
n∨

i=0

Sn−i ∧ Ei ∧ {i}+

)
∨

(
n−1∨
i=0

Sn−i ∧ Ei ∧ [i , i + 1]+

))
/ ∼



The less naive smash product
The base space for a 2-dimensional telescope
We give the half-open square Q := R≥0×R≥0 the structure of a
CW complex, with 0-cells the points (i , j) ∈ Q with i , j ∈ Z≥0, the
1-cells the intervals [i , i + 1]× {j} ⊂ Q and the intervals
{i} × [j , j + 1] with i , j ∈ Z≥0, and 2-cells the closed squares
[i , i + 1]× [j , j + 1] ⊂ Q with i , j ∈ Z≥0.

A filtration on Q by subcomplexes
Let Qn be the subcomplex of Q which consists only of the cells e
with lower left corner (i , j) such that i + j − dim(e) ≤ n. Then Qn
looks like a stair:
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The less naive smash product

Construction of (E ∧ F )n over the 0- and 1-cells
For (E ∧ F )n we take over the 0-cells of Qn the spaces
Sn−i−j ∧ Ei ∧ Fi ∧ {(i , j)}+.
Over the 1-cells of Qn we take

Sn−i−j ∧ Ei ∧ Fi ∧ ({i} × [j , j + 1])+ and

Sn−i−j ∧ Ei ∧ Fi ∧ ([i , i + 1]× {j})+,

where we have to make the obvious identifications of the part over
the 0-cells with the “edge” over the part over the 1-cells, via the
structure maps of the spectra E and F .



The less naive smash product
Construction of (E ∧ F )n over the 2-cells

What we need to do
We have to define something over a 2-cell e = [i , i + 1]× [j , j + 1]
which is consistent with our previous definition on the boundary ∂e.
Observe that ∂e consists of two paths from (i , j) to (i + 1, j + 1),
and our identifications made for 1-cells correspond to two maps
(going first up then right and going first right then up)

Sn−i−j ∧ Ei ∧ Fj → Sn−(i+1)−(j+1) ∧ Ei+1 ∧ Fj+1,

which don’t coincide.
If we want to “fill in” something over e, it should have the same
monodromy as our construction over ∂e.



The less naive smash product
Construction of (E ∧ F )n over the 2-cells

The monodromy of the construction over 1-cells
Let (s, t1, t2, x , y) ∈ Sn−i−j−2 ∧ S1 ∧ S1 ∧ Ei ∧ Fj , then we get via
going first up then right:

7→ (s, t1, x , t2, y) 7→ (s, t1, x , f (t2, y)) 7→ (s, e(t1, x), f (t2, y))

and from going first right then up:

7→ (s, t1, e(t2, x), y) 7→ (s, e(t2, x), t1, y) 7→ (s, e(t2, x), f (t1, y)),

so the difference between the two is precisely a precomposition with
an appropriate switch map 1 ∧ τ ∧ 1 ∧ 1.



The less naive smash product
Construction of (E ∧ F )n over the 2-cells

A bundle-theoretic description
Let ξ be the vector bundle on S1 ∧ S1 with transition map the
switch map τ : S1 ∧ S1 → S1 ∧ S1. Then our construction of
(E ∧ F )n over ∂e is isomorphic to Sn−i−j−2 ∧M(ξ) ∧ Ei ∧ Fj , with
M(ξ) the Thom space of ξ.

Extending to the 2-cells
Because of π1(BSO(2)) = π0(SO(2)) = ∗, we can deform the
classifying map of ξ to a constant map S1 → BSO(2), which
obviously extends to D1, thus gives rise to a bundle on e which
extends ξ.
We can thus define Sn−i−j−2 ∧M(ξ) ∧ Ei ∧ Fj over the 2-cell e, and
then make obvious identifications with the 1-cells and 0-cells we
already have.



The less naive smash product

Structure maps
The maps Σ(E ∧ F )n → (E ∧ F )n+1 are given for each 0-cell (i , j)
by the identity

S1 ∧ (Sn−i−j ∧ Ei ∧ Fj)→ Sn+1−i−j ∧ Ei ∧ Fj .

We have already built in the structure maps of E and F in our
identifications that make up (E ∧ F )n.



Properties

Theorem
E ∧ F is functorial in E and F and there are homotopy equivalences

a = aE ,F ,G : (E ∧ F ) ∧ G → E ∧ (F ∧ G )

τ = τE ,F : E ∧ F → F ∧ E

l = lE : S0 ∧ E → E

r = rE : E ∧ S0 → E
σ = σE ,F : (ΣE ) ∧ F → Σ(E ∧ F )

which are natural in the homotopy category, such that the following
8 diagrams commute up to homotopy.



Diagrams I

i) (associativity)

((E ∧ F ) ∧ G ) ∧ H

(E ∧ F ) ∧ (G ∧ H)

(E ∧ (F ∧ G )) ∧ H

E ∧ (F ∧ (G ∧ H))

E ∧ ((F ∧ G ) ∧ H)

a

a ∧ 1

a

a

1 ∧ a

ii) (transposition)
E ∧ F E ∧ F

F ∧ E

τ τ

1



Diagrams II

iii) (associativity and transposition)
(F ∧ E ) ∧ G

(E ∧ F ) ∧ G F ∧ (E ∧ G )

E ∧ (F ∧ G ) F ∧ (G ∧ E )

(F ∧ G ) ∧ E

τ ∧ 1 a

1 ∧ τa

τ a



Diagrams III

iv) (associativity and units)

(S0 ∧ E ) ∧ F S0 ∧ (E ∧ F )

E ∧ F

ll ∧ 1

a

v) (associativity and units)

(E ∧ S0) ∧ F E ∧ (S0 ∧ F )

E ∧ F

1 ∧ lr ∧ 1

a



Diagrams IV

vi) (associativity and units)

(E ∧ F ) ∧ S0 E ∧ (F ∧ S0)

E ∧ F

1 ∧ rr

a

vii) (associativity and units)

S0 ∧ E E ∧ S0

E

rl

a



Diagrams V

viii) (transposition)

S0 ∧ S0 S0 ∧ S0

τ

1



Why these eight diagrams?

Theorem (Mac Lane)
If you write down a smash product of some spectra (with
parentheses!) and two ways of re-grouping brackets, transposing,
applying units and suspension that reach the same conclusion, and
these two ways are homotopy equivalent –
then there is a proof of this homotopy equivalence that uses just
these 8 diagrams we’ve just seen.

Proof.
Basically, you connect each expression in spectra to a canonical form
and each “path” between two expressions to a canonical path. These
are formed by the 8 diagrams.
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Properties

Furthermore
I If X is a space with suspension spectrum S∞X and E any

spectrum, then E ∧ S∞X ' E ∧ X .
I If E → F → G is a cofibre sequence and H any spectrum, then

E ∧ H → F ∧ H → G ∧ H is a cofibre sequence.
I For spectra Ei , i ∈ I , we have a natural homotopy equivalence

(
∨

i Ei ) ∧ F →
∨

i (Ei ∧ F ).



Relating the naive and the less naive

Proposition
There is a homotopy equivalence ρ : T (E ∧ab F )→ E ∧ab F .

Proof.
Remember, for a spectrum E we defined

T (E )n =

((
n∨

i=0

Sn−i ∧ Ei ∧ {i}+

)
∨

(
n−1∨
i=0

Sn−i ∧ Ei ∧ [i , i + 1]+

))
/ ∼

so we can map T (E )n → En by mapping each wedge factor
Sn−i ∧ Ei → Ei + n − i via the (n − i)-fold structure map. This is
obviously compatible with the structure maps of T (E )n and En.
This is a homotopy equivalence, since it is a weak homotopy
equivalence of CW spectra. Remark: the homotopy inverse is not
easy to describe.
Now apply this to the spectrum E ∧ab F .
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Relating the naive and the less naive

Proposition
There is an embedding T (E ∧ab F ) ↪→ E ∧ F .

Proof.
You can think of an, bn as describing a path ω : R≥0 → Q that is
piecewise linear:

for t ∈ [n, n + 1] : ω(t) :=

{
(an + t − n, bn) if (an+1 6= an)

(an, bn + t − n) if (bn+1 6= bn)

This path lands in (a filtered subcomplex of) the 1-skeleton of Q.
We can therefore map (s, e, f , t) ∈ Sn−k ∧ Eak ∧ Fbk ∧ [k , k + 1]+ to
(s, e, f , ω(t)) ∈ Sn−ak−bk ∧ Eak ∧ Fbk ∧ ω([k , k + 1])+.
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Relating the naive and the less naive

Definition
Let eqab : E ∧ab F → E ∧ F be the composition of
ρ−1 : E ∧ab F → T (E ∧ab F ) with the embedding
T (E ∧ab F ) ↪→ E ∧ F .

Lemma
The map eqab is a homotopy equivalence if any of the following is
satisfied:

1. an, bn →∞,
2. an → d and ∀r ≥ d : ΣEr = Er+1 for some d ∈ N,
3. bn → d and ∀r ≥ d : ΣFr = Fr+1 for some d ∈ N.
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Relating the naive and the less naive
(Lemma: eq is a homotopy equivalence)

Proof.
First, we prove the case of assumption 1:
I For n ∈ N, let Gn ⊂ (E ∧ F )n be the subcomplex over cells eij

with lower left corner (i , j) such that i ≤ an and j ≤ bn. This
gives a subspectrum G ⊂ E ∧ F . Assumption 1) shows G is
cofinal.

I The inclusion T (E ∧ab F )n → (E ∧ F )n has image in Gn.
I There is a deformation retraction Gn � Ean ∧ Fbn which is

compatible with the structure maps.



Relating the naive and the less naive
(Lemma: eq is a homotopy equivalence)

Proof (cont.)

I In the diagram

Ean ∧ Fbn

T (E ∧ab F )n

Gn

ρ

∼

∼

the horizontal morphism must be a weak homotopy equivalence,
too.

I This shows that T (E ∧ab F ) ↪→ G ↪→ E ∧ F is a homotopy
equivalence.



Relating the naive and the less naive
(Lemma: eq is a homotopy equivalence)

Proof (cont.)
Now the case of assumption 2:
I We use a different subcomplex G ⊂ E ∧ F , in which we include

all cells eij with lower left corner (i , j) such that j ≤ bn and
i + j ≤ n. This allows for (i , j) with i > an, which is necessary
to get a cofinal subcomplex.

I The rest of the argument is the same.
I The proof for assumption 3 is also the same.



Proving the main theorem

General strategy
For each diagram (i–viii), pick certain sequences an, bn, cn such that
the naive smash products satisfy the diagrams and use the previous
lemma to get the property for the not-naive smash product.

Problem
For the diagrams (iv,v,vi) we need to be able to handle sequences
with an → d , so we can not construct the associator map a by using
only sequences an →∞.
For (vii) we need we need to handle sequences with an → d , so τ
has to be constructed in a way that allows this.

Solution
Employ more telescopes!
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Thank you for your attention!


