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The main source for this talk was Lam’s book “Serre’s problem on projective modules”. It
was Matthias Wendt’s idea to take the cuspidal cubic curve to construct a counterexample
to homotopy invariance of vector bundles on a singular affine variety. The graphics and
diagrams are drawn using TikZ/PGF.

1 Setting

Notation

Fix a ring R and a field k (you can take R = k = C if you’d like to).
“vector bundle” will mean “algebraic k-vector bundle”.
For a variety X/R denote by V B(X) the set of isomorphism classes of vector bundles
E on X. This is a contravariant functor by mapping a morphism of varieties f : X → Y
to the pullback map f∗ : V B(Y )→ V B(X).

For any variety X/R denote by X ×R A1
R := X ×Spec(R) Spec(R[t]) the affine line over

X. It comes with a canonical projection morphism prX : X ×R A1
R → X.

We say that a vector bundle E over X ×R A1
R is extended from X if there is a vector

bundle F overX such that (prX)∗F ' E , i.e. if the isomorphism class [E ] ∈ V B(X×RA1
R)

is in the image of (prX)∗.
We say that the functor V B(−) is homotopy invariant on a subcategory C of all

varieties if for all X ∈ C the projection prX induces a bijection (prX)∗ : V B(X ×R

A1
R) −→∼ V B(X), i.e. if all vector bundles over the affine line over X are extended.
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2 Some questions on homotopy invariance

Q 1. Is V B(−) homotopy invariant on all quasiprojective varieties?

A. No. Homotopy invariance fails for the smooth projective variety P1.

Proof. We construct for each a ∈ Z a rank 2 vector bundle E(a) on P1 × A1 which is
not extended, by gluing two trivial vector bundles on A1 × A1 via an explicit transition
function

(
A1 \ {0}

)
× A1 → GL2, (z, t) 7→ Az,t given by

Az,t :=

(
za tz
0 1

)
∈ GL2(k[z, z−1, t]).

Claim.

E(a)|P1×0
(1)
' O(−a)⊕O

(3)

6' O(−(a− 1))⊕O(−1)
(2)
' E(a)|P1×1.

Proof of Claim.

1. Az,0 = za ⊕ 1 defines O(−a)⊕O.

2. Az,1 =

(
za z
0 1

)
and in another trivialization

(
z−1 −1
1 0

)
Az,1

(
1 0

−za−1 1

)
=

(
za−1 0

0 z

)
which defines O(−(a− 1))⊕O(−1).

3. By a theorem of Grothendieck (or using older, less popular theorems), vector bundles
on P1 always decompose uniquely (up to permutation) into a sum of line bundles
and two vector bundles are isomorphic iff the line bundles in their decomposition
are isomorphic (up to permutation).

Remark. Topologically, there is a homotopy from the matrix Az,t to Az,0, which corre-
sponds to a homotopy of the classifying map P1C× C→ Gr∞ of the bundle E(a) to a
map which is constant along the C factor. Analogously we can show that, as topological
vector bundles, O(k)⊕O(l) ' O(k + l)⊕O, but not algebraically.
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Illustration of families of vector bundles

A1

X

A bundle over X × A1.

A1

X0

X1

If the restrictions to X × {0} and X × {1} are non-isomorphic,
the whole bundle is not extended from X.

A1

Xp

Removing a point p ∈ X, one can restrict the bundle to A1×X \ {p}
and ask whether this bundle is extended from X.
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Q 2. Is V B(−) homotopy invariant on all affine varieties?

A. No. Homotopy invariance fails for the singular affine curve Caff := {y2−x3 = 0} ⊂ A2

“cuspidal cubic”.

Proof. We work with the projective curve C := {zy2 − x3 = 0} ⊂ P2, where 0 = [0 :
0 : 1] ∈ C is the singular point and ∞ = [0 : 1 : 0] ∈ C the point at infinity, such that
Caff = C \ {∞}. The nonsingular part Cns = C \ {0} has a group structure (constructed
like for an elliptic curve), and is isomorphic (as algebraic group) to Ga; fix an isomorphism
ϕ : Ga −→∼ Cns. Furthermore (see [Hartshorne, Example II.6.11.4]), there are group
isomorphisms Cns −→∼ CaCl◦(C) −→∼ Pic◦(C), p 7→ O(∞− p).
Now we take the graph Γϕ ⊂ A1×C of ϕ : A1 ↪→ C, this is a divisor, so we can take

the line bundle O(Γϕ) on A1×C. If we pull back along t : {t} × C ↪→ A1×C, we get

t∗O(Γϕ) ' O(∞− ϕ(t))

as one can see from the local equation. Since the O(∞− ϕ(t)) are non-isomorphic for
different t, this shows that O(Γϕ) is not extended from C.
If we restrict O(Γϕ) to A1×Caff , the fibers over t ∈ A1 are still non-isomorphic

(since Pic(Caff ) ' A1, as one can see using a Mayer-Vietoris argument for K0 on the
normalization of the curve), hence we have an explicit bundle on A1×Caff that is not
extended from Caff .

Q 3. (Serre’s Problem on Projective Modules) Are all finitely generated projective modules
over a polynomial ring k[t1, . . . , tn] free?

A. Yes, this is the Quillen-Suslin theorem.

Some questions we’re not going to answer in detail here

Q 4. Is V B(−) homotopy invariant on all smooth affine varieties?

A. Yes, that’s a theorem by Lindel and others. The proof idea is more or less that a
smooth affine variety looks étale-locally like An

k , where one can use Quillen-Suslin (but
it’s not that easy).

Q 5. For G a linear algebraic group, is every G-bundle on An
k trivial?

A. No, this depends heavily on G and there are not many positive results aside from
Quillen-Suslin for G = GLn.

Q 6. For R a regular local ring, are all finitely generated projective modules over a
polynomial ring R[t1, . . . , tn] extended from R?

This is the Bass-Quillen conjecture, it is still open.
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The Picard group of the affine cuspidal cubic curve

In this section, we sketch how to prove that Pic(Caff ) ' k, which was used in the
previous section to get a counterexample to homotopy invariance, not only from the
cuspidal cubic in the singular projective case, but also in the singular affine case.
The ring of functions on the affine cuspidal cubic curve is A := k[x, y]/(y2 − x3). We

write A = k[t2, t3] and the normalization is just k[t2, t3] ↪→ k[t] =: Ã.
The conductor (by definition, the annihilator of Ã/A as A-module) is c = (t2, t3). The

conductor square
A Ã

A/c Ã/c

is a pullback square and there is a Mayer-Vietoris exact sequence

0→ A× → Ã× ⊕ (A/c)× →
(
Ã/c

)×
→ Pic(A)→ Pic(Ã)⊕ Pic(A/c)

where we know A× = k×, Ã× = k[t]× = k, A/c = k and one can show
(
Ã/c

)×
=(

k[t]/(t2, t3)
)× ' k× ⊕ k. Furthermore, Pic(k) = 0 and Pic(k[t]) = 0. Therefore, the

interesting part of the exact sequence is

k× ⊕ k× → k× ⊕ k → Pic(A)→ 0

and analysis of the map shows that k× ⊕ k× maps precisely onto the k× factor, so
k −→∼ Pic(A).

The statements we didn’t prove so far can be shown “by hand”, see for example Victor
I. Piercey: “Picard Groups of Affine Curves”.
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3 Overview of Quillen’s Proof

Theorem (Quillen-Suslin ’76). Let R be a PID, n ∈ N. Then any finitely generated
projective module over R[t1, . . . , tn] is free.

In other words: all vector bundles over An
R are trivial.

Quillen-
Suslin

Affine
Horrocks

Quillen
Patching

Local
Horrocks

Elementary
Localization
Lemma

induction

together

The proof falls out of an affine Horrocks theorem which is proved via Quillen
Patching applied to a local Horrocks theorem. Quillen Patching is proved by a
nested induction, using an elementary lemma on localization to start the induction.
We will use local Horrocks and the localization lemma as black boxes.

We need some notation first:

Definition. We use the notation M(R) for the set of all finitely generated modules
over a ring R and P(R) for the projective modules therein. If A is an R-algebra and
M ∈ M(R), then we say that A ⊗R M ∈ M(A) is extended from M and R and we
write Q ∈MR(A) for all Q ∈M(A) which are extended from R, and PR(A) likewise.

In the light of Serre-Swan, this notion of “being extended” is compatible with the
previous definition for vector bundles.
Theorem (Quillen Patching). Let R be any commutative ring, A an R-algebra and
M ∈M(A[t1, . . . , tn]) finitely presented. Then

(An) Q(M) :=
{
g ∈ R | Mg ∈MAg(Ag[t1, . . . , tn])

}
is an ideal of R, and

(Bn)
(
∀m ∈ Max(R) : Mm ∈MAm(Am[t1, . . . , tn])

)
=⇒ M ∈MA(A[t1, . . . , tn]).

The set Q(M) is called the Quillen ideal of M .
Corollary. P ∈ P(R[t1, . . . , tn) is extended from R iff ∀m ∈ Max(R) : Pm is a free
Rm[t1, . . . , tn]-module.
Geometrically, this means: an algebraic vector bundle on An ×X is extended from

X = Spec(R) iff this is the case for a neighborhood of each closed point of X.

Proof of corollary. We specialize the theorem to A = R and finitely generated projective
modules M .
“⇐”: Free modules over Rm[t1, . . . , tn] are clearly extended from Rm, so by (Bn) P is

extended from R.
“⇒”: Pm is extended from Pm/(t1, . . . , tn)Pm ' (P/(t1, . . . , tn)P )m, which is projective

over a local ring, hence free, so Pm = (P/(t1, . . . , tn)P )m ⊗Rm Rm[t1, . . . , tn] is free.

6



Notation Denote by R〈t〉 := R[t]S the localization of R[t] at the multiplicative set S
of all monic polynomials in t. Monic means leading coefficient 1. Write M〈t〉 := MS for
an R[t]-module M .

Fact. If R is a PID, then R〈t〉 is a PID.

Theorem (Local Horrocks). Let R be a commutative local ring and P ∈ P(R[t]).
If P 〈t〉 := R〈t〉 ⊗R[t] P is R〈t〉-free, then P is R[t]-free.

Theorem (Affine Horrocks). Let R be any commutative ring and P ∈ P(R[t]).
If P 〈t〉 = R〈t〉 ⊗R[t] P ∈ PR(R〈t〉), then P ∈ PR(R[t]).

Remark. The geometric meaning of the Horrocks’ Theorems is the following: If a vector
bundle over A1

R extends to P1
R, then it is extended from Spec(R).

Proof of Affine Horrocks. Let P ∈ P(R[t]) with P 〈t〉 ∈ PR(R〈t〉). For m ∈
Max(R), P 〈t〉m ∈ PRm(Rm〈t〉) and that implies P 〈t〉m is Rm〈t〉-free. By Local Hor-
rocks for Rm, Pm is Rm[t]-free. By Quillen Patching (B), P is extended from R.

The following proof of Quillen-Suslin via Affine Horrocks is due to Murthy.

Proof of the Quillen-Suslin Theorem. We proceed by induction over n, the base n = 0 is
trivial. Let A := R[t2, . . . , tn] and consider A[t1] ⊂ R〈t1〉[t2, . . . , tn] ⊂ A〈t1〉.
If P ∈ P(R[t1, . . . , tn]), then P ⊗R[t1,...,tn] R〈t1〉[t2, . . . , tn] is a finitely generated

R〈t1〉[t2, . . . , tn]-module, by the induction hypothesis a free one. Hence, P ⊗A[t1] A〈t1〉 is
a free A〈t1〉-module. Affine Horrocks implies P is extended from P/t1P ∈ P(A). Again
by the induction hypothesis, P/t1P is A-free, so that P is A[t1]-free.
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4 Proof of Quillen Patching

Proof of Quillen Patching. The proof proceeds in three steps.

1. (An =⇒ Bn),

2. (A1 =⇒ An) by induction,

3. (A1) using a localization lemma.

Step 1: It suffices to check: Assume (An), then for M as in Bn, we have Q(M) = (1).
Let M ′ := A[t1, . . . , tn]⊗A (M/(t1, . . . , tn)M), this is a finitely presented A[t1, . . . , tn]-

module which is extended from A.
For any mER maximal there is an iso ϕ : Mm −→∼ M ′m, since Mm extended from Am

means
Mm ' Am[t1, . . . , tn]⊗Am (Mm/(t1, . . . , tn)Mm) .

Now ϕ is the localization of an Ag[t1, . . . , tn]-isomorphismMg −→∼ M ′g for some g ∈ R\m
(this is a common-denominator-trick). So, g ∈ Q(M)\m, hence Q(M) 6⊂ m. Every proper
ideal is contained in some maximal ideal, Q(M) is an ideal by assumption, hence Q(M)
is not a proper ideal but (1).
This shows (An =⇒ Bn).
Step 2: We prove (An) by induction, assuming (A1). The induction hypothesis is

(An−1), hence (Bn−1) (by step 1).
Let M be a finitely presented A[t1, . . . ,n ]-module. Clearly, R ·Q(M) ⊆ Q(M), so it

suffices to show
∀f0, f1 ∈ Q(M) : f := f0 + f1 ∈ Q(M).

Let N := M/tnM (which is f.p. over A[t1, . . . , tn−1]) and L := M/(t1, . . . , tn)M .
Apply (A1) to A[t1, . . . , tn−1] → A[t1, . . . , tn−1][tn] and Mf , so Mf is extended from

Nf .
Claim. Nf is extended from L along Af → Af [t1, . . . , tn−1].

Thanks to (Bn−1), it suffices to check that (Nf )m is extended from (Af )m for all
m ∈ Max(Rf ).
Write p := m ∩ R, i.e. m = pf . Since f /∈ p, we have f0 /∈ p or f1 /∈ p, wlog. f0 /∈ p.

But Mf0 is extended from Lf0 , so (Nf )m = Np is extended from Lp.
This shows Mf is extended from Af , so f ∈ Q(M). Subsequently, (A1) =⇒ (An) for

all n.
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Step 3: Now we prove (A1), i.e. for M a finitely presented A[t]-module, we show
f0, f1 ∈ Q(M) =⇒ f := f0 + f1 ∈ Q(M).
First we replace R by Rf , so we may assume (f0, f1) = (1). With N := M/tM we

want to show M ' N [t].
Let ui : Mfi −→∼ Nfi [t] be isomorphisms for i ∈ {0, 1}. WLOG ui = id mod (t) (if

not, postcompose with an automorphism of Nfi). We have the following diagram:

Mf0f1Mf0 Mf1

Nf0f1 [t] Nf0f1 [t]Nf0 [t] Nf1 [t]

loc loc

loc loc

u0 o u1o(u0)f1 ∼ (u1)f0∼

θ
∼

If the two isos (u0)f1 and (u1)f0 coincide, we can glue u0 and u1 together to an A[t]-
isomorphism M −→∼ N [t]. Therefore, we try to adjust the ui to make this happen.

Lemma (Quillen’s Elementary Fact about Localization). Let E be an R-algebra and
f0, f1 ∈ R such that (f0, f1) = (1) = R. Write (1 + tE[t])times := {α ∈ E[t]× | α ≡ 1
mod (t)}. Then

(1 + tEf0,f1 [t])× =
(
(1 + tEf1 [t])×

)
f0
·
(
(1 + tEf0 [t])×

)
f1
.

We apply this to E := EndA(N).

Let θ := (u1)f0 ◦ (u0)f1
−1 ∈ EndAf0f1

[t] (Nf0f1 [t]) ' Ef0f1 [t].

In fact, θ = id mod (t), so θ ∈ (1 + tEf0f1 [t])×.
By the elementary localization lemma, θ = θ0 · θ1 with θ0 ∈ ((1 + tEf1 [t])×)f0 and

θ1 ∈ ((1 + tEf0 [t])×)f1 . Thus we find vi ∈ (1 + tEfi [t])
× ⊆ AutAfi

[t] (Nfi [t]) with θ0 =

(v1)−1f0
and θ1 = (v0)f1 . Then (v0u0)f1 = θ1(u0)f1 and (v1u1)f0 = θ−10 (u1)f0 and (v1u1)f0 ◦

(v0u0)f1
−1 = θ−10 θ0θ1θ

−1
1 = id.

So we’re done by replacing ui with viui.

9



Proofs for the black boxes from commutative algebra

This is a sketch of the Nashier-Nichols proof of the Local Horrocks Theorem.
Let (R,m) be a local ring, k := R/m. For any R-module M we write M := M/mR.

Lemma. If an ideal I ER[t] contains a monic polynomial, then any monic γ ∈ I can be
lifted to a monic in I.

Proposition. Let I ER[t] be an invertible ideal. If it contains a monic f , then I = (g)
for some monic g ∈ I. In particular, R[t]→ I, 1 7→ g is an R-isomorphism.

Lemma (Top-Bottom Lemma). Let f =
∑
ait

i, g =
∑
bjt

j ∈ R[t] such that an, b0 ∈ R×.
If {b1, . . . , bn} ⊂ m, then (f, g) = (1).

Proof of Local Horrocks. First note that R has no nontrivial idempotents, hence rkP is
constant. We do induction on n := rkP . Denote by S ⊂ R[t] the multiplicative set of
monic polynomials.

Let n = 1 and ϕ : PS → R[t]S an R[t]S-iso. Since P is finitely generated, we can modify
ϕ such that I := ϕ(P ) ⊆ R[t]. Since IS = R[t]S , the ideal I contains an element of S (a
monic). Since ϕ|P : P −→∼ I, the module I is projective, hence an invertible ideal. We
conclude P −→∼ I ←−∼ R[t].

For the inductive step let n ≥ 2. Choose p1, . . . , pn ∈ P such that they form an R[t]S-
basis for PS . Since R[t] = k[t] is a PID, P is R[t]-free, and the theorem on elementary
divisors over a PID tells us that there exist q1, . . . , qn ∈ P that form a basis of P and
satisfy p1 = αq2 for some α ∈ k[t].
Now set p := q1 + trp1 ∈ P , for r � 0, then p = q1 + trαq2, so p, q2, . . . , qn form a

R[t]-basis for P .
Choose a monic s ∈ S such that sq1 =

∑n
i=1 hipi for some hi ∈ R[t]. Then sp =

(h1 + str) p1 +
∑n

i=2 hipi. For r � 0, (h1 + str) is monic, so p, p2, . . . , pn form a R[t]S-
basis for PS .
Now we study the multiplicative set T := 1 + mR[t] ⊂ R[t].

Claim. p, q2, . . . , qn form a R[t]T -basis for PT .
Proof of Claim. From 1 + mR[t] ⊂ (R[t]T )× follows 1 + mR[t]T ⊂ (R[t]T )×, so mR[t]T ⊂
rad(R[t]T ).

PT

mR[t]TPT
'
(

P

mR[t]P

)
T

=
(
P
)
T

= P .

Now p, q2, . . . , qn is a R[t]T -basis for P T and the Nakayama lemma (whose assumptions
we just checked) tells us that p, q2, . . . , qn has to be a R[t]T -basis for PT .

Finally we take the R[t]-module Q := P/pR[t]. The localizations QS ' PS/pR[t]S
and QT ' PT /pR[t]T are both free of rank n− 1. The Top-Bottom-Lemma says that a
maximal ideal of R[t] avoids at least S or T , so we conclude that Q is locally free of rank
n− 1, hence Q is finitely generated projective of rank n− 1.
From the induction hypothesis, QS ' (R[t]S)n−1 =⇒ Q ' (R[t])n−1, so

P ' R[t]p⊕Q ' (R[t])n .
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Quillen actually proved the following localization lemma:
Theorem. Let E be a (not necessarily commutative) ring with 1, x, y, t commuting
indeterminates over E and E[x, y, t]× the group of invertible elements of E[x, y, t] that
have constant term 1. For a central element f ∈ E we write (E[x, y, t]×)f for the image
of E[x, y, t]× → Ef [x, y, t]×.

For all θ(t) ∈ Ef [t]× there exists k ≥ 0 such that

θ
((
x+ fky

)
t
)
θ(xt)−1 ∈

(
E[x, y, t]×

)
f
.

Proof. Define ϕ(x, y) ∈ Ef [x, y] by θ(x+ y)− θ(x) = yϕ(x, y). For r ≥ 0,

θ ((x+ f ry) t) θ(xt)−1 = 1 + (θ ((x+ f ry) t) θ(xt)) θ(xt)−1

= 1 + f rytϕ(xt, f ryt)θ(xt)−1.

For r � 0, we have f rϕ(x, y)θ(x)−1 ∈ E[x, y]. Consequently, 1+f rytϕ(xt, f ryt)θ(xt)−1 =
σ(x, y, t)f for some σ(x, y, t) ∈ E[x, y, t]. We can choose σ such that σ(x, y, t) = 1
mod (yt). If σ(x, y, t) would be invertible, we would be done.
In Ef [x, y, t], the inverse of σ(x, y, t) is

θ(xt)θ ((x+ f ry) t)−1 = σ(x+ f ry,−y, t)f .

Define σ′(x, y, t) := σ(x + f ry,−y, t) ∈ E[x, y, t], then we have σ−1 = σ′ in Ef [x, y, t].
Since σ′(x, y, t) = 1 mod (yt) we can write

σσ′ = 1 + ytµ1, for µ1 ∈ E[x, y, t],

σ′σ = 1 + ytµ2, for µ2 ∈ E[x, y, t].

Since σσ′ = 1 = σ′σ after localization at f , we find s � 0 such that fsµ1 = 0 = fsµ2.
Consequently, σ(x, fsy, t) ∈ E[x, y, t]× with inverse σ′(x, fsy, t). We replace r by k := r+s
and get

θ ((x+ f ry) t) θ(xt)−1 = σ(x, fsy, t)f ∈
(
E[x, y, t]×

)
f
.

Corollary. Let E be an R-algebra and f ∈ R, and θ(t) ∈ Ef [t]×. Then there exists k ≥ 0
such that for any a, b ∈ R with a− b ∈ (fk) we have θ(at)θ(bt)−1 ∈ (E[t]×)f .

Proof. Pick x := b and y := (a− b)f−k in the theorem.

Corollary. Let E be an R-algebra and f0, f1 ∈ R such that (f0, f1) = (1). Then

Ef0f1 [t]× =
(
Ef1 [t]×

)
f0
·
(
Ef0 [t]×

)
f1
.

Proof. Apply the previous corollary to θ(t) and each of the localizations Ef1 → (Ef1)f0
and Ef0 → (Ef0)f1 , then pick a k ≥ 0 that works for both.
From (f0, f1) = (1) follows (fk0 , f

k
1 ) = (1): if (fk0 , f

k
1 ) ⊂ n ⊂ (1) for n a prime ideal,

then fk0 ∈ n =⇒ f0 ∈ n, so (f0, f1) ∈ n, hence (1) ⊂ n. This shows that (fk0 , f
k
1 ) is not

contained in any proper prime ideal, hence (fk0 , f
k
1 ) = (1).

Now we can pick b ∈ (fk1 ) such that 1− b ∈ (fk0 ), then

θ(t)θ(bt)−1 ∈
(
Ef1 [t]×

)
f0

and θ(bt)θ(0)−1 ∈
(
Ef0 [t]×

)
f1
.
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