A manifold whose functions are the smooth functions on the real line with rational period
Wednesday, March 31st, 2010 | Author: Konrad Voelkel
Hi, I was reading in
Jet Nestruev: Smooth Manifolds and Observables, Springer, 2003
about a month ago (after I stumbled over a question on MO) and there was an exercise that resisted solution for more than a week.
Well.... now I found out that I have just misread the exercise. However, this way I basically did several exercises at once. Here comes the problem and its solution:
The problem
(inspired by page 28, chapter 3, exercise 3.17.5 in Nestruev)
Find a smooth (real) manifold such that its algebra of smooth functions is isomorphic to the algebra of all smooth functions that have some rational period (i.e. there exists such that for all x). Note that we don't fix a period here. Let's call the algebra in question (smooth functions on the real line with some rational period) .
You might want to stop reading here and think for a second (or minutes) about the solution or similar problems that have easier solutions. A more vague problem would be
Find a
space such that thefunctions correspond to functions that are periodic with some rational period.
The manifold version of the problem has no solution (there doesn't exist such a smooth manifold), as I will prove. I don't know if there is some precision of the vague version (e.g. some
A simple sub-problem
If we would fix a rational number , and look at all smooth functions with period , these f would factor through and provide functions such that . Finally we see that they all factor through so there is an isomorphism .
This even works for any non-rational .
Let's call the algebra of smooth functions on the real line with period .
From simple to hard
For a rational number , the algebra of smooth functions with period is clearly a sub-algebra of the algebra of all rational-periodic functions . For two rational numbers , we even have and isomorphic (via the pullback along ).
On the geometric side, this should correspond to a homeomorphism and the induced morphism is indeed the identity. To see what I mean precisely by "induced morphism", look at the section "The Nestruev approach" below.
Furthermore, for each rational and each natural number , is a sub-algebra of . Since every rational number can be written as reduced quotient , every -periodic function is also -periodic, hence -periodic, and is the smallest natural number for which is -periodic.
Looking at the geometric picture again, the inclusion induces a map (in the other direction). This map is the n-fold covering of by (proof left to the reader).
A maybe-not-solution
If we say a non-periodic function has the rational period 0, the manifold we're looking at is just the real numbers. This notion of rational periodic function is surely not a useful one, since every function satisfies , thus every function is 0-periodic. Note also that constant functions should have smallest natural period 1, not 0.
A misleading idea
Take the space , the disjoint union of a circle with a point. Every element of defines a function on : it has a smallest natural period , which we take as value on the point , and we use the values on to define values on the (by factorizing through the quotient map that identifies and ).
Now there are functions on that assign to some non-rational value, and this shows that this approach fails somehow. This cannot even be saved by taking for a locally ringed space, putting on the ring or because periods are always non-negative and is not a ring. You might take a "locally monoided space"... but then you could as well just take as ringed space the pair . This can indeed be considered as one step in the "solution" of the problem by Nestruev below.
The Nestruev approach
Nestruev wants us to think of differential geometry in terms of
An algebra defines a topological space with underlying set the dual space of all -algebra homomorphisms (functionals), and the weak topology for all maps that come from evaluations at elements of .
Define an algebra
Now there is an obvious homomorphism , by sending each to the evaluation at and this is clearly surjective. It is not always injective. The necessary and sufficient condition to is to be
so a non-geometric algebra has elements vanishing "on every point" yet not being the zero element of . Nestruev proves that the dual space of a geometric algebra is always Hausdorff, which is at least something into the direction of a manifold-like space.
Dual spaces
So let's have a look at the dual spaces of and . This was the actual exercise I misread first
(page 28, chapter 3, exercise 3.17.4 and 3.17.5 in Nestruev)
Describe the dual spaces of and .
The dual space of is simply , as described above. A detailed proof is contained in Nestruev. The most difficult thing to prove is that doesn't contain more points than those coming from evaluations. To prove this, compactness of is used.
The dual space of consists of all -algebra homomorphisms . At least we have all evaluations at points . In the case of these evaluations coincide for two if the difference was an integer. This can't happen here because for each two there is a function with period greater than such that .
To see that there aren't more functionals than those coming from evaluations, suppose having such a functional . Then for each , there is some with . Note that we could actually choose the to lie in and the whole proof works for , too. The complements of the pre-images are non-empty open sets which form a cover of . Choose a finite subcover and define a function by
then we have , and furthermore: is nowhere vanishing on .
From this we can derive that , too. The requirement on to be a unital -algebra homomorphism now shows
which is a contradiction. Therefore, must have been the evaluation at a point and we conclude that . The topology given as the weak topology according to all evaluations coincides with the standard analytic topology on .
Geometric algebras
Nestruev also poses a follow-up problem (strangely, earlier in the text)
(page 24, chapter 3, exercise 3.9.5)
Decide whether and/or are geometric -algebras.
is clearly geometric, since as a set and a 1-periodic function on that vanishes everywhere on is always the constant zero function, so contains only the zero function, thus is the zero ideal. So we know now that is isomorphic to .
Similarly, if a rational-periodic function on vanishes everywhere on , which is equivalent to being in the kernel of all elements of , then it must be the constant zero function. So is geometric, too, and is isomorphic to .
This is a good point to get confused. Take care of the definition of - these are exactly those maps that are \emph{given by evaluations}, nothing more. Of course, we would like to have some smooth-manifold-like object instead of and look at smooth functions on instead of this algebra .
For geometric algebras , an algebra homomorphism induces a dual morphism (we have already looked at this in the case of the inclusion , which has as dual map the n-fold covering of , and the isomorphism , which has as dual map the identity of ). It is easy to prove that an isomorphism has a homeomorphism as dual map. The inclusion has the dual map given by the quotient , which is an -fold covering map.
Complete algebras
The next step in the Nestruev definition of smooth manifolds is the notion of
For any subset of the dual space of a geometric -algebra , the elements can be restricted to , which yields the restriction homomorphism . The space has to be defined carefully, as the space of functions on that can
An algebra is called
Of course, Nestruev wants us to check if our algebras are complete:
(page 32, chapter 3, exercise 3.28.3)
Decide whether and/or are complete -algebras.
is clearly complete, since a function locally defined by the restriction of smooth 1-periodic functions can be seen as a smooth function on that satisfies , so it's an element of again.
is incomplete. For example, define a function by choosing for each interval with a smooth periodic function with period such that for . The functions can now be chosen such that is not periodic, for example by letting the maxima of the grow without boundary, letting be unbounded, too.
The algebras of smooth functions on manifolds are always complete (exercise!), so we have seen that the manifold we were looking for doesn't exist.
-closed algebras
Returning to the general setting, we would like to have a homeomorphism for any -algebra and subset . If is geometric, there is always a continuous map which is a homeomorphism onto a subset of , but fails to be surjective in general.
A geometric -algebra is
Nestruev proves that for each basis open set of a -closed geometric algebra , the map is surjective.
Smooth algebras
A complete, geometric -algebra is called
is a smooth algebra.
Repairing defects
Any -algebra yields a geometric one, by quotienting out the ideal (at the risk of getting just the trivial algebra). A geometric algebra is obviously not changed in this process.
Any geometric algebra yields a complete one, by defining the completion to be the algebra . A complete algebra remains untouched by this process. The completion of is just the algebra of smooth functions on the real line.
Any geometric algebra yields a -closed one, by adding all functions of the form for and . This closure is definable via abstract nonsense, too: it is the unique smooth envelope (which is defined by the universal property, that morphisms to -closed algebras should factor uniquely through the smooth envelope). This way, the smooth envelope acts as mediator between non-closed algebras with smooth algebras.
Some comments
If anything here remains unclear, leave a comment. If something is wrong, please leave a comment. I also recommend reading Nestruev. It's a nice elementary textbook (translated from Russian) that could be interesting for anyone who does either differential geometry, algebraic geometry or theoretical physics and of course for those who like all of these topics and their intersection. The algebra is frequently used in other examples throughout the book, but never appears again.
Jet Nestruev is a collective pseudonym, like Nicolas Bourbaki but a little bit less influental (and they didn't write as much). The members of this group are A.Astashov, A.Bocharov, S.Duzhin, A.Sosinsky, A.Vinogradov and M.Vinogradov. If you like this kind of mathematics, take a look at this page about the works of A. Vinogradov.
The main theme, guessing from a rather philosophical paper, seems to be the notion of
2021-05-23 (23. May 2021)
There is a mistake in "Dual spaces", where the function g is assumed to be nowhere vanishing. This seems to be wrong, as it is a sum of nowhere vanishing terms that might cancel each other out. Maybe this is fixable by some positivity assumptions, but I doubt it.